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We use collective interactions in plasmonic metasurfaces to manipulate the interplay between direct and cascaded
third-harmonic generation. We implement a simple case where in contrast to the direct contribution, which is
mainly enhanced by the local plasmonic resonances, the cascaded contribution enhancement may be manipulated
using the metasurface’s geometry, in addition to the single nanoparticle’s electrical response, by enabling the
proper nonlocal interactions at the second-harmonic frequency. In addition, an anomalous phase relation of
the single nanoparticle’s linear polarizability at the second-harmonic region affects the relative phase between
the direct and cascaded contributions, which results in a Fano-like asymmetrical line shape of the third-harmonic
generation. We demonstrate that this can be used to enhance or contrarily completely eliminate third-harmonic
generation from metasurfaces over a very narrow bandwidth. Such a unique fundamental observation of the
interplay between direct and cascaded third-harmonic generation in periodic resonant systems may find new
applications in sensing and to control nonlinear optical phenomena. © 2019 Optical Society of America

https://doi.org/10.1364/JOSAB.36.000E71

1. INTRODUCTION

Coherent collective scatterings in metallic nanoparticle (NP)
arrays has been investigated in recent years, in both the linear
and nonlinear regimes [1–4]. Frequently, the coupled dipole
approximation (CDA) is used to model and analyze the array
response. Hybridization of the local plasmonic mode of the
NPs, known as localized surface plasmon resonance (LSPR),
with the nonlocal photonic mode of the array, which arise when
coherent scattering takes place under the Rayleigh anomaly
(RA) condition, creates a surface lattice resonance (SLR). SLRs
show sharp spectral features and an enhanced electric field re-
sponse compared to the LSPR of the single NP [5–7]. These
attributes make them useful for many processes and applica-
tions, which include tunable lasing [8–10], ultra-narrowband
absorbers [11], coupling of bright and dark modes [12], direc-
tional emission of polarized light [13], and enhanced electron
photoemission in photodetectors [14].

In addition, enhancement of second-harmonic generation
(SHG) from plasmonic arrays was achieved using linear [15]
and nonlinear [16] RAs [i.e., coherent scatterings at either
the fundamental frequency (FF) or the second harmonic
(SH)]. These observations were phenomenologically explained
by Michaeli et al., by extension of the conventional CDA to the
nonlinear case [16]. Moreover, coherent scattering at the SH
was shown by simulation to also enhance third-harmonic

generation (THG) by means of cascaded THG [17]. As op-
posed to direct THG, which converts three FF photons into
a third harmonic (TH) photon through the material’s cubic
nonlinearity, cascaded THG may occur in quadratic nonlinear
materials and rises from a SHG process followed by a sum-
frequency generation (SFG) involving the SH and the FF
waves. Conventional schemes to control these two separate
THG mechanisms mostly rely on selective phase matching
of the different processes (i.e., SHG, SFG, or THG) [18–20].
In two-dimensional (2D) structures, such as NP arrays
and metasurfaces, a longitudinal phase-matching condition is
irrelevant. However, adequately spacing the NPs in the array
may result in the coherent scattering of light, which acts as
an analog to the phase-matching condition.

In this work, we demonstrate control over the effective cubic
nonlinearity of plasmonic NP arrays. In addition to enhance-
ment of the cascaded THG process that can be achieved by the
presence of SLR at the SH [17], we show that the interplay
between direct and cascaded THG may lead to constructive
and destructive interference in very close spectral proximity.
An anomalous phase relation of the single NP’s polarizability,
which exists around the SH, plays a crucial role in adjusting the
phase of the cascaded contribution to the THG. Specifically,
it enables a rapid phase change of the cascaded process com-
pared to the direct contribution, which leads to constructive
and destructive interference in very close spectral proximity.
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As a result, the total THG manifests in a Fano-like asymmet-
rical line shape with enhancement or complete elimination
points.

2. COUPLED DIPOLE APPROXIMATION

To capture the dynamics of an array of NPs, we must consider
the impinging field as well as the scattered fields by the NPs.
The CDA is commonly used in this case. The model describes
all the NPs in the array as point dipoles. The induced dipole
moment at the ith lattice point is proportional to the local
electric field through

pi�ω� � αi,s�ω�Ei,loc�ω�, (1)

where αi,s�ω� is the frequency-dependent polarizability of the
single NP at the ith lattice point, which is enhanced at the
LSPR. In addition, the scalar approximation was used, which
assumes that the polarizability is a scalar and not a rank 2 ten-
sor. As a result, all the induced dipole moments are in the same
direction of the polarization of the impinging light.

Expressing the local field as the sum of the applied field and
the scattered field yields

Ei,loc�ω� � Ei,app�ω� � Ei,sca�ω�
� Ei,app�ω� �

X
j≠i

Aij�ω�pj�ω�, (2)

where Aij is the Green’s function of a dipole describing
scattering from the jth dipole to the ith dipole. Under the scalar
approximation, the Green’s function takes the form

Aij�ω� � eikrij
��1 − ikrij��3 cos2�θij� − 1�

r3ij
� k2 sin2�θij�

rij

�
,

(3)

where rij is the distance vector between ith the jth dipoles, θij is
the angle between the impinging light’s polarization and rij,
k � n�ω�ω∕c is the wave vector of illumination angular fre-
quency ω, n�ω� is the refractive index, and c is the speed
of light.

The terms in the scattering sum in Eq. (2) are summed con-
structively under the RA condition, when a diffraction order of
the array propagates on the array plane. The RA condition may
be understood through the conservation of quasimomentum as

kk � Gm1,m2
� ks, (4)

where kk is the component of the illumination wave vector par-
allel to the array surface, Gm1,m2

� m1b1 � m2b2 is a general
reciprocal lattice vector with m1,m2 ∈ Z, b1 and b2 are the
primitive reciprocal lattice vectors, and ks is the wave vector
of the surface scattered wave.

Equations (1)–(3) are a set of self-consistent equations for
the dipole moments in the array. It is instructive to study the
case of an infinite array under illumination at normal incidence
and to obtain an analytical expression for the solution. In this
case, one may drop the indices in Eqs. (1) and (2) as a result of
the translation symmetry of the lattice. The infinite summation
over all the Green’s functions yields the array’s structural factor,

S�ω� �
X
j≠0

A0j�ω�: (5)

The structural factor describes the collective contribution of the
array’s photonic modes and is defined for illumination at nor-
mal incidence. In general, for illumination at oblique incidence,
the structural factor may be defined to depend on the in-plane
momentum of the impinging light kk [21], but for the case of
illumination at normal incidence this dependence is null. The
dipoles are driven in phase and thus the in-plane momentum
may be ignored. For the simple case of illumination at normal
incidence on a 1D infinite chain, the infinite scattering sum
is summed constructively according to Eq. (3) under the
condition

kd � 2πm, (6)

where d is the chain’s spacing and m ∈ N. This condition of
coherent scattering coincides with the RA condition from
Eq. (4) with kk � 0.

Solving Eqs. (1)–(3) and (5) to find the effective polarizabil-
ity, associated with the applied field rather than the local
field p�ω� � αeff �ω�E app�ω�, under illumination at normal
incidence results in

αeff �ω� �
αs�ω�

1 − S�ω�αs�ω�
: (7)

The effective polarizability accounts for the lattice interactions
through the structural factor. Moreover, the effective polariz-
ability describes the formation of SLRs under the condition
that both αs�ω� and S�ω� are resonant simultaneously (i.e.,
when the LSPR of the single NP and the RA of the array share
the same spectral region).

Now we implement the nonlinear CDA described in
[16,17] for the case of THG to calculate the effective sec-
ond-order hyperpolarizability of an infinite array under illumi-
nation at normal incidence under the non-depleted pump
approximation. The first- and second-order hyperpolarizabil-
ities associate the induced dipole moment to the square and
cube of the local electric field, respectively. We use the scalar
approximation for the hyperpolarizabilities, which means that
the induced dipole moment is in the same direction for all
harmonics. As in the linear case, the effective second-order
hyperpolarizability is related to the applied field rather than
the local field, p�3ω� � �1∕3!�γeffE3

app�ω�.
We start by writing the induced dipole moment at the SH

[16] as

p�2ω� � 1

2!
β�SHG�
s E2

loc�ω� � αs�2ω�E loc�2ω�, (8)

where β�SHG�
s ≡ βs�2ω;ω,ω� is the single NP’s first-order SHG

hyperpolarizability. To enable second-order interactions (i.e.,
βs ≠ 0), the NPs are assumed to break inversion symmetry
along the induced dipole moment. The first term describes
the SHG process where the FF local field is calculated from
Eq. (2). This local field accounts for the scattered field in ad-
dition to the applied field and therefore may be enhanced under
the RA condition. The second term contains the local field at
the SH that each dipole experiences. This field results from the
sum of scattered fields, E loc�2ω� � E sca�2ω�.
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Next, we write the induced dipole moment at the TH as

p�3ω� � 1

3!
γ�THG�
s E3

loc�ω� � β�SFG�s E loc�ω�E loc�2ω�

� αs�3ω�E loc�3ω�, (9)

where β�SFG�s ≡ βs�3ω; 2ω,ω� and γ�THG�
s ≡ γs�3ω;ω,ω,ω�

are the single NP’s first-order SFG and second-order THG hy-
perpolarizabilities, respectively. The first term describes the di-
rect THG process and the second term describes the collective
cascaded THG process. For simplicity, self-cascading effects
have been neglected. It is possible to model such effects directly
into the single NP’s second-order hyperpolarizability—γ�THG�

s .
The third term contains the local field at the TH and, as for the
SH case in Eq. (8), this term describes the scattering at the TH
as E loc�3ω� � E sca�3ω�.

The local field at the harmonics, 2ω and 3ω, takes the form

E loc�mω� � E sca�mω� �
X
j≠0

A0j�mω�p�mω�

� S�mω�p�mω�, (10)

where m ∈ f2, 3g. The structural factors at the harmonics de-
scribe the sum of the scattered fields from all the other dipoles
in the array. The structural factors become resonant under the
nonlinear RA condition where a diffraction order of the rel-
evant harmonic propagates on the surface. For the case of a
1D chain under illumination at normal incidence this condi-
tion has the form of Eq. (6), using the k-vector of the relevant
harmonic instead of the FF k-vector, and describes coherent
scattering on the chain axis at the chosen harmonic. For oblique
incidence, the full nonlinear, quasimomentum matching con-
ditions on the surface must be considered to find the nonlinear
RA condition [16].

Solving Eqs. (1)–(3) and (5) along with Eqs. (8)–(10) to
find the effective second-order hyperpolarizability yields (see
Appendix A for full derivation)

γeff � γdirect � γcas �
γ�THG�
s � 3β�SFG�s β�SHG�

s
S�2ω�

1−αs�2ω�S�2ω�
�1 − αs�ω�S�ω��3�1 − αs�3ω�S�3ω��

:

(11)

The effective second-order hyperpolarizability accounts for
lattice effects through the structural factors at all harmonics
and is an exact expression that describes the whole array re-
sponse with nontrivial dependency on the model’s parameters.
It can be seen that the effective hyperpolarizability is separated
into its two contributions, the direct and the cascaded. Both
contributions share the same denominator, which may become
resonant under the linear and TH nonlinear SLRs. The main
difference between the two contributions in Eq. (11) is the ar-
ray’s structural factor at the SH [S�2ω�], which appears only in
the cascaded term. Moreover, S�2ω� appears in the numerator
of the cascaded term in addition to its denominator, giving the
option for enhancement of this term at the SH nonlinear RA
condition, even without fulfilling the SH nonlinear SLR con-
dition (i.e., even if the single particle is not resonant at the SH).
Since S�2ω� is dependent on the array geometry, while the
LSPR is not, the cascaded term can be further manipulated
compared to the direct term. In general, the two contributions

to the THG may sum up constructively to enhance the total
THG or destructively to reduce or even eliminate the THG.
The above findings are equally valid for 1D chains and 2D
arrays. To demonstrate, in the next section we present numeri-
cal results based on 1D chains.

3. SIMULATIONS

To study the nonlinear dynamics and the interplay between the
direct and cascaded terms in a simple system, we implemented
the nonlinear CDA on an infinite 1D chain of nonlinear di-
poles under illumination at normal incidence. The simulated
chain is illustrated in Fig. 1. The spacing of the chain was taken
to be d � 660 nm and the surrounding refractive index n �
1.51 to support SH nonlinear RA at λFF � 2nd ≈ 1990 nm.
The applied field is polarized perpendicular to the chain’s di-
rection and induces the dipole moments in the same direction
for all harmonics.

A single LSPR of the NPs can be approximated as a
Lorentzian of the form [22]

αs�ω,ωres� �
A

ωres − ω� iγ
, (12)

where A is the polarizability amplitude, ωres � 2πc∕λres is
the resonance frequency, λres is the resonance free-space
wavelength, and γ is the damping constant. We consider the
case where each NP has two resonances at λres,1 � 2000 nm
and λres,2 � 700 nm with damping constants of γ1 �
1.38 × 1014 Hz and γ2 � 1.69 × 1014 Hz, respectively. The
damping constants were chosen to be the same order of mag-
nitude as in [23]. Such double resonance behavior can be
found, for example, in [24,25]. In this case, the single NP’s
polarizability can be represented as the sum of the two
Lorentzian functions with different amplitudes,

αs�ω� � A1αs�ω,ωres,1� � A2αs�ω,ωres,2�: (13)

Assuming that the single NP may be modeled as an anhar-
monic oscillator [26], with quadratic and cubic restoring forces,
the nonlinear hyperpolarizabilities may be expressed according
to Miller’s rule [27,28] as

β�SHG�
s � B1α

2
s �ω�αs�2ω�,

β�SFG�s � B2αs�ω�αs�2ω�αs�3ω�,
γ�THG�
s � Cα3s �ω�αs�3ω�, (14)

where B1, B2, and C are constants.

Fig. 1. Schematic illustration of the infinite 1D chain used in the
simulation with a spacing of d � 660 nm and a surrounding medium
refractive index of n � 1.51. The impinging and scattered light are
marked by blue arrows in the y- and x-directions, respectively, and
their polarization is displayed in purple in the z-direction. The dipole
moments are induced in the z-direction and emit the scattered light
along the chain’s axis.
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The amplitude constants of the polarizability and hyperpo-
larizabilities in the simulations were chosen similarly to [17]
to be A1 � 0.3 cm3 s−1, A2 � 0.2 cm3 s−1, B1 � B2 �
5 × 10−9 nm−5 V−1, and C � 10−12 nm−7 V−2. The hyperpo-
larizability constants B1,B2,C were chosen such that the
off-resonance values of the single NP’s hyperpolarizabilities,
β�SHG�
s , β�SFG�s , γ�THG�

s are of the same order of magnitude as
in [17].

The nonlinear simulations were done for fundamental wave-
length range of λFF � 1500–2500 nm with the main area of
interest around λFF ≈ 2000 nm, where the two contributions
to the THG are resonant. The SH and TH ranges for the
simulation are 750–1250 nm and 500–833 nm, respectively.

Figure 2(a) depicts the absolute value (blue solid line) and
phase (red dashed line) of the single NP’s linear polarizability as
a function of the FF wavelength. The polarizability is resonant
at the FF (∼2000 nm) and the TH (∼666 nm) and nonreso-
nant for the SH wavelengths range (∼1000 nm). Looking at
Eq. (14), we see that the single NP’s first-order hyperpolariz-
abilities are not significantly enhanced under these conditions
compared to the second-order hyperpolarizability. Therefore,
the direct contribution is dominant in this case.

The phase of a single LSPR experiences a positive change of
π from the shorter wavelengths to longer ones. The proximity
of the two resonances creates a special phase behavior: Near
each resonance the phase rises in accordance to a single
LSPR. However, in-between the two resonances, at the SH
range, the phase drops. Such an anomalous phase relation is
associated to many phenomena, including electromagnetic-
induced transparency [29,30], slow light [31], superluminal

light [32], and tunable all-optical delays in optical fibers [33].
In this case, the anomalous phase is expressed, according to
Eq. (14), in the first-order hyperpolarizabilities and affects
the phase of cascaded THG process compared to the direct pro-
cess. Hence, it enables an interesting interplay between the two
contributions to the THG.

Figure 2(b) depicts the absolute value (blue solid line) and
phase (red dashed line) of the structural factor at the SH,
S�2ω�, as a function of the FF wavelength, λFF (bottom axis),
and the SH wavelength, λSH (top axis). The absolute value
shows a sharp peak at λFF ≈ 1990 nm �λSH ≈ 995 nm�.
Note that this sharp feature is not due to the linear interaction
of FF with the structure, but because of the nonlinear scattering
of the SH, where the nonlinear SH RA condition is fulfilled.
The nonlinear RAwavelength corresponds to the first order RA
of the SH and can be found using Eq. (6) with the k-vector of
the SH and m � 1. This strong resonance is translated to a
cascaded THG enhancement, according to Eq. (11). The phase
of S�2ω� experiences a change of over a π in the simulation
range from φ ≈ 0.8π to φ ≈ −0.5π, with an abrupt drop of
almost π∕2 over a 100 nm bandwidth. In addition, the abrupt
drop occurs while crossing the nonlinear RA, where the phase φ
is around zero. Higher orders of nonlinear RAs exist for
m > 1 in Eq. (6), but the nearest RA is at λFF ≈ 1000 nm
�λSH ≈ 500 nm�, which is out of the relevant range of
this simulation—1500 nm< λFF < 2500 nm �750 nm < λSH
< 1250 nm�.

In Fig. 3(a) the absolute value of the direct (blue solid line),
cascaded (red dashed line), and total (yellow dotted line)
effective second-order hyperpolarizabilities from Eq. (11) are
depicted as a function of the FF wavelength, λFF (bottom axis),
and the generated TH wavelength, λTH (top axis). Both the
direct and cascaded contributions to the THG are resonant
around λFF ≈ 2000 nm �λTH ≈ 667 nm�. The spectrally
broad resonant response of the direct contribution originates
from the LSPRs and the spectrally narrow resonant response
of the cascaded contribution is caused by the photonic mode
of the lattice.

In contrast to both of its contributions, the total THG is
highly asymmetric and shows a Fano-like spectral line shape.
On the long wavelengths side, the two contributions add up
constructively to increase the total THG. On the short wave-
length side, the two contributions interfere destructively and
exhibit THG elimination. The vertical dashed-dotted lines
in Fig. 3(a) mark the wavelengths of destructive and construc-
tive interference.

To understand the different interference cases, it is useful to
look at Fig. 3(b), which depicts the phase of the direct (blue
solid line), cascaded (red dashed line), and total (yellow dotted
line) effective second-order hyperpolarizabilities from Eq. (11)
as a function of the FF wavelength, λFF (bottom axis), and the
generated TH wavelength, λTH (top axis). Figure 3(c) shows
the direct, cascaded, and total hyperpolarizabilities at the
two wavelengths marked in Figs. 3(a) and 3(b) on the complex
plane. The phase difference between the direct and cascaded
terms on the right side of the resonance is approximately
7π∕4, which leads to constructive interference, as shown in
Fig. 3(c) for λFF � 2060 nm �λTH ≈ 687 nm�, where the

Fig. 2. (a) Absolute value (blue solid line) and phase (red dashed
line) of the single particle polarizability. The polarizability possesses
two resonances at λres,1 � 2000 nm and λres,2 � 700 nm. The grey
area shows the SH region of the simulation. (b) Absolute value (blue
solid line) and phase (red dashed line) of the structural factor at the SH
as a function of the FF wavelength (bottom axis) and the SH wave-
length (top axis). The structural factor features a sharp enhancement at
λFF ≈ 1990 nm �λSH ≈ 995 nm� under the nonlinear RA condition.
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two contributions add up to almost double their original value.
On the left side of the resonance, the phase difference is ap-
proximately π, which leads to destructive interference, as shown
in Fig. 3(c) for λFF � 1930 nm �λTH ≈ 643 nm�, where the
total THG is eliminated.

The source of this quickly varying phase difference from π
for destructive interference to ∼7π∕4 for constructive interfer-
ence is the anomalous phase of the polarizability at the SH re-
gion superimposed with the sudden phase jump of the SH
structural factor at the RA wavelength. The phase difference
between the cascaded and direct second-order hyperpolarizabil-
ities, ΔΦ � φcas − φdirect, can be calculated from their ratio,

γcas
γdirect

� 3β�SFG�
s β�SHG�

s S�2ω�
γ�THG�
s �1 − S�2ω�αs�2ω��

≈ α2s �2ω�S�2ω�, (15)

where we used Miller’s rule from Eq. (14) and the fact that 1 −
S�2ω�αs�2ω� is almost constant in the relevant spectral regime
to make the last step. This reveals that ΔΦ depends on the
phase of both the polarizability and the structural factor at
the SH.

To examine the effect of the anomalous phase of the single
NP on ΔΦ, we simulated the response of two identical chains
as in Fig. 1, which only differ by the composing individual NP.
The first NP type (NP 1) possesses one resonance at the FF
wavelength—λres � 2000 nm. The polarizability therefore
takes the form of Eq. (12) and lacks the anomalous phase re-
lation. The second NP type (NP 2) is identical to the NP de-
picted in Fig. 2(a), which possesses two resonances at the FF
and TH wavelengths and retains the anomalous phase relation
at the SH region. Figure 4 shows ΔΦ for the two NP types,
with one (NP 1, blue solid line) or two (NP 2, red dotted line)
resonances as a function of the FF wavelength, λFF (bottom
axis), and the TH wavelength, λTH (top axis). In addition,
Table 1 shows the phase of αs�2ω�, α2s �2ω�, S�2ω�, and
ΔΦ for the destructive and constructive interference wave-
lengths marked in Fig. 4, as well as the phase change between
the two wavelengths, marked δφ.

According to Fig. 4 and Table 1, it is apparent that the phase
differenceΔΦ of the NP 1 chain is almost identical to the phase

Fig. 3. (a) Absolute value and (b) phase of the direct (blue solid
line), cascaded (red dashed line) and total (yellow dotted line) effective
second-order hyperpolarizability as a function of the FF wavelength
(bottom axis) and TH wavelength (top axis), calculated from
Eq. (11). The black vertical dash-dotted lines in (a) and the black ver-
tical arrows in (b) correspond to wavelengths of λFF � 1930 nm and
λFF � 2060 nm. (c) The direct (blue arrow), cascaded (red arrow),
and total (yellow arrow) effective hyperpolarizabilities for the two
wavelengths marked in (a)–(b) on the complex plane show both
destructive (left) and constructive (right) interference.

Table 1. Phase Difference between the Cascaded and
Direct Hyperpolarizabilitiesa

αs�2ω� α2
s �2ω� S�2ω� ΔΦ

NP 1 λDES ∼ −π ∼0.1π ∼0.25π ∼0.35π
λCON ∼ −π ∼0.1π ∼ −0.2π ∼ −0.1π
δφ ∼0 ∼0 ∼0.45π ∼0.45π

NP 2 λDES ∼ −0.6π ∼ −1.2π ∼0.25π ∼ −π
λCON ∼ −0.75π ∼ −1.5π ∼ −0.2π ∼ −1.75π
δφ ∼0.15π ∼0.3π ∼0.45π ∼0.75π

aNote: The phase of the polarizability αs�2ω�, polarizability squared α2s �2ω�,
and the structural factors S�2ω� at the SH and the phase difference between the
cascaded and direct contributions ΔΦ for the original destructive �λDES �
1930 nm� and constructive �λCON � 2060 nm� interference wavelengths,
which are marked in Fig. 3, for the two NPs. In addition, the change of the
phase between the two wavelengths, δφ, is shown for each considered quantity.

Fig. 4. Phase difference between the cascaded and direct second-or-
der hyperpolarizabilities for NP 1 chain (blue solid line) and for NP 2
chain (red dotted line) as a function of the FF wavelength (bottom
axis) and TH wavelength (top axis), calculated as the phase of the ratio
in Eq. (15). The dotted grey vertical lines mark the wavelength of
destructive (λDES � 1930 nm) or constructive (λCON � 2060 nm)
interference, respectively. The light blue and orange arrows show
the phase difference change between the destructive and constructive
interference wavelengths (i.e., δφ) in Table 1. The inset shows the
absolute value of effective second-order hyperpolarizabilities for the
two NP types.
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of S�2ω�, with only small deviations. The phase of α2s �2ω�,
which adds to the phase of S�2ω� to give ΔΦ, does not greatly
change the phase of S�2ω�, as can be seen quantitatively from
Table 1. Thus, the SH polarizability does not play a significant
role in shaping the NP 1 chain phase difference. In this case, at
both wavelengths of the original destructive and constructive
interference ΔΦ describes constructive interference between
the cascaded and direct THG. The absolute value of the effec-
tive second-order hyperpolarizability for NP 1 (blue solid line)
and NP 2 (red dotted line) is depicted in the inset of Fig. 4,
which shows that on both sides of the NP 1 line shape the two
contributions interfere constructively. The NP 2 line shape is
identical to that in Fig. 3(a) and is shown for comparison with
NP 1.

The phase of the NP 2 polarizability changes by the signifi-
cant amount of ∼0.5π at the SH region, as can be seen from
Fig. 2(a). It is apparent from Fig. 4 and Table 1 that between
the destructive and constructive wavelengths, the phase of
α2s �2ω� adds to the phase of S�2ω� and shifts down the
center of ΔΦ at about 1.5π to the vicinity of −π, which
enables destructive interference. In addition, ΔΦ experiences
a greater change upon crossing the nonlinear RA wavelength
(λFF ≈ 1990 nm) compared to the NP 1 chain, 3π∕4 versus
π∕2. The anomalous phase relation of αs�2ω� joins the
descending phase of S�2ω� to increase the accessible ΔΦ range
before and after the nonlinear RA. ΔΦ obtains the value −π left
to the nonlinear RA and the rapid change in ΔΦ allows con-
structive interference on the right of the nonlinear RA.

4. SUMMARY

In this work, we used the nonlinear CDA to study the interplay
between direct and cascaded contributions to THG on a 2D
infinite plasmonic array under illumination at normal inci-
dence. The nonlinear CDA shows that the second-order hyper-
polarizability is the sum of cascaded and direct terms. Both
terms share a common denominator, which becomes resonant
for the SLR condition of the FF or TH; however, only the cas-
caded term has an additional denominator that describes the
formation of SLR of the SH. In addition, the cascaded term
contains the structural factor in the numerator, thus enabling
enhanced cascaded THG independent of the single NP’s
polarizability.

We simulated a simple case of a 1D infinite chain to test the
effective second-order hyperpolarizability from Eq. (11), which
is the result of the nonlinear CDA. We found that the direct
and cascaded contributions may interfere either constructively
or destructively, resulting in an enhancement or total elimina-
tion of the THG, respectively. In addition, we discovered that
even though the NPs are not resonant at the SH, their phase in
this spectral region can significantly affect the relative phase
between the two contributions to the THG. We specifically
show that the existence of an anomalous phase of the polariz-
ability at the SH influences the first-order hyperpolarizabilities,
which appear only in the cascaded term, thus creating a phase
difference between the direct and cascaded contributions. Also
taking into account the phase of the SH structural factor, which
shows a descending tendency over the simulation range, results
in an over 2π change of the phase difference in the simulation

region. Together, these contributions lead to the observed
Fano-like spectral line shape of the total THG and transition
from enhancement to elimination.

APPENDIX A: DERIVATION OF THE EFFECTIVE
SECOND-ORDER HYPERPOLARIZABILITY OF
AN INFINITE 2D ARRAY UNDER ILLUMINATION
AT NORMAL INCIDENCE

Here we show the derivation of Eq. (11) in the main text. We
start from Eq. (2) along with Eqs. (5) and (7) for illumination
at normal incidence to find the local field at the fundamental
frequency by

E loc�ω� � E app�ω� � E sca�ω� � E app�ω�
�

X
j≠0

A0j�ω�p�ω� � E app�ω� � S�ω�p�ω�

� E app�ω� � S�ω� αs�ω�
1 − S�ω�αs�ω�

E app�ω�

� E app�ω�
1 − S�ω�αs�ω�

: (A1)

Now we write Eq. (8) of the second harmonic using Eqs. (10)
and (A1) to get

p�2ω� � 1

2!
β�SHG�
s

E2
app�ω�

�1 − S�ω�αs�ω��2
� αs�2ω�S�2ω�p�2ω�:

(A2)

Solving for p�2ω� yields

p�2ω� � 1

2!
β�SHG�
s

E2
app�ω�

�1 − S�ω�αs�ω��2�1 − S�2ω�αs�2ω��
:

(A3)

We continue to the third harmonic and write Eq. (9) using
Eqs. (10) and (A1) to get

p�3ω� � 1

3!
γ�THG�
s

E3
app�ω�

�1 − S�ω�αs�ω��3

� β�SFG�s
E app�ω�

1 − S�ω�αs�ω�
S�2ω�p�2ω�

� αs�3ω�S�3ω�p�3ω�: (A4)

Solving for p�3ω� and substituting p�2ω� with Eq. (A3) yields

p�3ω� � 1

3!

γ�THG�
s � 3β�SFG�s β�SHG�

s
S�2ω�

1−S�2ω�αs�2ω�
�1 − S�ω�αs�ω��3�1 − S�3ω�αs�3ω��

E3
app�ω�:

(A5)

From here, it is easy to extract the effective second-order
hyperpolarizability defined in p�3ω� � �1∕3!�γeffE3

app�ω� by

γeff �
γ�THG�
s � 3β�SFG�s β�SHG�

s
S�2ω�

1−S�2ω�αs�2ω�
�1 − S�ω�αs�ω��3�1 − S�3ω�αs�3ω��

: (A6)
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