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This tutorial aims to provide an extensive overview of methods of generating and
shaping light at new frequencies by using nonlinear metasurfaces. We first review meth-
ods of manipulating light by using linear metasurfaces, on the basis of local control of the
amplitude and phase of transmitted and reflected light. To extend these principles to non-
linear metasurfaces, we first introduce the mechanisms and principles underlying non-
linear interactions in metasurfaces. We then show how to use these principles to
control the phase, amplitude, and polarization of emitted nonlinear radiation and how,
through careful spatial arrangement of single nonlinear elements on a metasurface, it is
possible to tailor the shape of the light emitted through nonlinear interaction. © 2018
Optical Society of America
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Shaping light with nonlinear
metasurfaces
SHAY KEREN-ZUR, LIOR MICHAELI, HAIM SUCHOWSKI, AND TAL
ELLENBOGEN

1. INTRODUCTION

Shaping light, i.e., tailoring the spatial shape of the light’s wavefront, is an essential
function of many optical systems. The ability to manipulate the shape of light, which
defines some of its most important physical properties, such as the momentum and
information it carries as it propagates, enables the distribution of its electro-magnetic
(EM) energy into specific spatial locations and control over the properties of light–
matter interactions. Therefore, the ability to form optical wavefronts on demand is
very appealing for both applications and fundamental science.

The most common and useful description of the spatial evolution of a monochromatic
light beam propagating in a well-defined direction is provided by the paraxial approxi-
mation of the Helmholtz equation:

∂2xU � ∂2yU � 2ik∂zU � 0; (1)

where z is the propagation direction,U is the complex envelope of the electromagnetic
wave, and k is the wave vector. The eigensolutions to this equation are beams of light
that maintain their spatial form while propagating.

The most common beam-type solution to the paraxial Helmholtz equation is a
Gaussian beam [1,2]. More general beam types include Hermite–Gauss, Laguerre–
Gauss, and Bessel–Gauss beams [1–3]. In addition, there are many other types of
beams that serve as solutions to the paraxial wave equation. Each of these solutions
has various valuable properties; e.g., Laguerre–Gauss beams carry orbital angular mo-
mentum, Bessel beams are nondiffracting [4], and Airy beams move along curved
trajectories [5]. Different beam shapes are used to carry energy in various profiles
that are tailored for specific applications, e.g., stimulated emission-depletion micros-
copy [6,7], optical tweezing [8,9], and the optimization of optical gain [10,11]. In
addition, owing to the orthonormal nature of the different modes of a given basis,
multiple different beams can be used for data multiplexing [12,13].

Shaping light into well-defined beams involves only the basic solutions to the paraxial
wave equation. Light can also be shaped into more flexible forms to create arbitrary
images in the optical far field. Because the diffraction pattern that appears in the far
field is related to the generated beam wavefront through a Fourier transform relation
[14], the ability to design arbitrary far-field wavefronts relies on the ability to imprint
any arbitrary pattern of amplitude, phase, and polarization on the transverse plane of
the beam. To find the patterns required for a specific image, holography methods are
often used [15–19], in which the holograms defining the desired diffraction patterns
can be calculated analytically, in simple cases, or numerically, for more complex pat-
terns. These numerical calculations are based on computational methods such as fast
Fourier transformation, the Gerchberg–Saxton algorithm, and the FiDOC algorithm
for phase retrieval [20–25]. Holograms designed by using these techniques are known
as computer-generated holograms (CGHs).
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Over the past couple of decades, there have been immense advancements in the ability
to shape light using two-dimensional optical materials called metasurfaces. These are
optically thin structured materials made from subwavelength nanostructures, also re-
ferred to as meta-atoms, which allow control over the properties of the light interacting
with them. Metasurfaces enable the manipulation of waves in the optical far field and
can be used as optical elements for beam shaping and holography. Moreover, metasur-
faces also enable the control of light in the intermediate and near-field zones. By tuning
the behavior of waves in the intermediate regime, also known as the Fresnel zone, it is
possible, for example, to focus beams or engineer desired point spread functions. At
shorter distances, at which the behavior of light is governed by its near-field character-
istics, judicious manipulation of the energy distribution can be beneficial for various
processes, such as nonlinear generation of new frequencies, surface-enhanced Raman
scattering, enhancement of Purcell factors, and enhancement of the chirality of molecules.

Whereas linear optics and the shaping of light have been studied since ancient times,
nonlinear optics was introduced only half a century ago, and nonlinear beam shaping
has been practiced for only the past few years [26–30]. Moreover, most of the research
and applications developed over the past decade in the field of optical metasurfaces
have focused on the linear shaping of optical wavefronts. Nonlinear optics permits the
generation of light at new frequencies and the control of photon–photon interactions
by using nonlinear optical materials [31]. Therefore, leveraging light shaping tech-
niques to also control nonlinear light–matter interactions permits the efficient creation
of light at new frequencies in predefined shapes. In contrast to the linear shaping of
light, in which the wavefront is manipulated by changing the spatial amplitude and
phase profiles of existing light, in the nonlinear case, light is directly generated at new
frequencies with the desired shape.

To shape light via a nonlinear optical process without necessarily shaping the incident
light, there is a need to exert spatial control over the nonlinear susceptibility tensor.
However, when natural nonlinear crystals are used, some limitations apply. The value
of the nonlinear tensor is a naturally given constant that cannot be changed. It is pos-
sible to manipulate only the sign of the quadratic nonlinear tensor, at very limited
resolutions [32,33]. In addition, it is necessary to consider the phase mismatch be-
tween propagating waves to achieve efficient interaction between them. This phase
mismatch reduces the efficiency of the interaction and distorts the shape of the non-
linear output. Recently, a new approach for the nonlinear shaping of light by using
metasurfaces has been presented. Owing to the unique properties of metasurfaces,
many of the problems that arise when using natural nonlinear materials for nonlinear
beam shaping can be alleviated. In recent years, it has been shown that metasurfaces
enable efficient local control over the amplitude, phase, and polarization of transmit-
ted and reflected light. Over the past decade, these advancements have led to many
applications and discoveries, from optical spin-orbit coupling [34] to the generalized
Snell’s law [35]. In parallel, researchers have begun to use these new methods of nano-
scale optical design to enable 2D functionalities that allow the operation of conven-
tional optical elements to be mimicked in thin 2D surfaces and even expand the
functionality of the systems beyond what can be achieved through conventional means
[36,37]. These concepts of functional metasurfaces for controlling the shape of the
light were recently adapted to nonlinear metasurfaces. Such functional nonlinear
metasurfaces benefit from advantages such as local and absolute control of the non-
linear tensor, resonant interaction, and phase-mismatch-free interactions, which can-
not be achieved in conventional functional nonlinear devices.

Although the linear response of such materials can be explained by effective medium
theories and Mie scattering and its nonlocal extensions [38–42], the intriguing optical
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nonlinearity of such metasurfaces is still not fully understood. In addition to strong
efforts to study the fundamental nonlinear behavior of metasurfaces [43–47], in the
past few years, nonlinear metasurfaces have been leveraged to achieve unprecedented
functionalities, including the nonlinear shaping of emitted light beams [48–54].

In this tutorial, we briefly outline the background of linear and nonlinear interactions
with optical metasurfaces and general beam shaping concepts. In addition, we present
a broad overview of the linear and nonlinear beam shaping of light by using meta-
surfaces. We mainly focus on linear and nonlinear metasurfaces of the plasmonic type.
Although the field of dielectric nonlinear metasurfaces may provide advantages in
terms of efficiency and bandwidth, it is still evolving. In addition, the underlying
mechanisms that provide the nonlinearity in dielectric metasurfaces are essentially
different. Nevertheless, many of the concepts that are being used for nonlinear shaping
of light by plasmonic metasurfaces will be relevant also for nonlinear shaping of light
by dielectric nonlinear metasurfaces. Therefore, along the manuscript we will shortly
mention some of the progress that was done in this field.

The paper is organized as follows: In Section 2, we begin with a short overview of the
interactions of light with subwavelength structures and continue by presenting the
manipulation of light by using linear metasurfaces. This section is brought as a short
introduction to the readers who are not familiar with the subject of shaping light by
linear metasurfaces. For further reading on this subject we advise the readers to turn to
more comprehensive reviews [55–67]. Readers who are already familiar with this
subject can skip to the next section. The concepts presented in Section 2 in their linear
context are expanded in the following sections to their nonlinear parallels. In Section 3,
we introduce the mechanism of nonlinear interactions in metasurfaces, and in Section 4,
we describe the methods for achieving full control over the nonlinear tensor by using
metasurfaces. Later, in Section 5, we discuss the underlying mechanisms of collective
nonlinear effects in nonlinear metasurfaces. In Section 6, we extend these concepts to
the nonlinear shaping of light and review several recent studies in this field. We also
discuss the possibility of using nonlinear holography for the nonlinear generation of
light with any arbitrary shape. Finally, in Section 7, we summarize and discuss the future
outlook for the nonlinear shaping of light with metasurfaces.

We believe that this tutorial should be helpful for both experts and beginners in the
field of metasurface-based nonlinear beam shaping and that it may serve as a practical
guide for developing new and exciting metasurface devices for optical imaging, spec-
troscopy, communication, and computing.

2. MANIPULATION OF LIGHT WITH LINEAR METASURFACES

Metasurfaces can be used to efficiently and locally control the amplitude, phase, and
polarization of transmitted and reflected light. Therefore, they offer the possibility of
miniaturizing traditional optical elements and realizing new functionalities. Over the
past two decades, a wide variety of optical elements have already been realized by
using metasurfaces, including wave plates [68,69], polarization switches, holograms,
diffractive gratings [70,71], wavelength-selective surfaces [72], and lenses [73–75].
Numerous types of metasurfaces have been studied, spanning from metasurfaces com-
posed of either metallic or high-index dielectric planar assemblies of nanoscale optical
resonators to metasurfaces with designs based on holes in metallic or dielectric films.
Their optical response depends on the individual nanoresonator material used, its mor-
phology, the geometry of the array and the surrounding media. The purpose of this
section is to lay the foundations for shaping light with nonlinear metasurfaces by
understanding the basic principles of linear metasurfaces and ways to apply them
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for shaping of light. For further extensive reading on linear metasurfaces, additional
comprehensive reviews are available [55–67].

Because the net response of a metasurface stems, most often, from the scattering of
light by individual nanoresonators, we will briefly describe the underlying physical
mechanism of such scattering. We will mainly focus on the case in which the nano-
resonators are metallic nanoparticles and thus support resonances associated with free
electron motion, called localized surface plasmon resonances (LSPRs). These
resonances lead to enhancement and localization of the EM field in the vicinity of
a metallic nanoparticle along with enhanced scattering cross sections. Additionally,
LSPRs may potentially give rise to enhanced nonlinear light–matter interactions, thus
making them attractive for nonlinear processes, as will be discussed in the following
section. In addition to plasmonic resonances, we will briefly discuss the mechanisms
and features of the dielectric resonances of nanoparticles as well as their potential to be
incorporated into linear and nonlinear beam shaping devices.

2.1. Local Manipulation of Light Scattering by Means of Single and Coupled
Nanoresonators

The physics underlying LSPRs is the collective oscillations of free electrons associ-
ated with the LSPRs, which can be described by using a driven harmonic oscillator
model [56]. In this model, a restoring force is exerted by the positive ions in the metal,
which attract the displaced electrons. The phase of the electron cloud motion relative
to the phase of the electrical driving force determines the relative phase and amplitude
of the scattered light. At resonance, the motion of the electrons lags with respect to the
electrical driving force by a phase of π∕2, whereas the full spectral width extends from
in-phase motion, for frequencies lower than the resonant frequency, to π-phase-shifted
motion, for frequencies higher than the resonant frequency (Fig. 1). Consequently,
when only a single plasmonic resonance is involved, the phase of the scattered light
can be controlled only within a range of π, and such manipulation is accompanied by
changes in the scattering amplitude.

Figure 1

The amplitude and phase of the free electron cloud motion versus the wavelength.
Inset: a sketch of a plasmonic nanorod whose electron cloud has been displaced.
The displacement behavior of the free electrons at a nanostructure caused by an
oscillating EM field can be treated as a driven damped harmonic oscillator. In the
vicinity of the resonance wavelength, the phase of the electron motion relative to
the driven field changes significantly.
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The above description depicts the mechanism of plasmonic resonances only qualita-
tively; however, one must often consider the exact spectral positions of these
resonances to design metasurfaces with the required functionalities. To achieve this
goal, one must either perform a rigorous analysis to solve the exact electromagnetic
problem or perform numerical calculations using electromagnetic simulation tools or
approximate methods. An exact solution to the scattering problem exists only for
spheroids [41] and ellipsoids [42], whereas in the general case, the polarizability
of a nanoparticle, denoted by α, can be found by using the quasi-static approximation.
This approximation assumes that the phase of the applied field is constant over the
entire particle volume; therefore, the particle size d must be much smaller than the
wavelength in the surrounding medium, i.e., d ≪ λmed. For larger particles, dynamical
corrections to this approximation are often used. An important result of the quasi-
static approximation is the polarizabilities along the principal axes for an ellipsoid
with semiaxes a1, a2, and a3 and volume V � 4π

3
a1a2a3 [76]:

αi � V
ϵ�ω� − ϵmed

ϵmed � Li�ϵ�ω� − ϵmed�
; (2)

where ϵ�ω� and ϵmed are the dielectric constants of the particle and the surrounding
medium, respectively, and the Li, which satisfy L1 � L2 � L3 � 1, are geometric fac-
tors given by Li � a1a2a3

2

R
∞
0

dq
�a2i �q�f �q�, where f �q� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�q� a21��q� a22��q� a23�

p
. For

a qualitative discussion of the outcomes of the polarizability expression and the con-
ditions under which its denominator vanishes and a resonance condition is fulfilled,
one can consider the simplified dielectric constant of a Drude metal below its plasma

frequency ωp with a collision angular frequency γ, ϵDrude�ω� � 1 − ω2
p

ω2�iγω
. The simple

Drude model cannot describe interband transition effects, which typically occur in the
visible regime for noble metals. Although the above polarizability result was formu-
lated for small particles in the quasi-static regime, it can typically be applied for par-
ticles with dimensions of the order of tens of nanometers [77,78]. Moreover, it
captures several of the most important features of plasmonic resonances, as described
below. First, the different components of the polarizability described in Eq. (2) cor-
respond to spectrally separated resonances, which depend on the semiaxis lengths.
Second, in an elongated plasmonic nanoparticle, the resonance along the direction
of elongation redshifts as the corresponding semiaxis length increases. Third, the plas-
monic resonances redshift as the dielectric constant of the surrounding medium in-
creases. The polarizability of an ellipsoid, with adequate corrections to account for
dynamic depolarization and radiative damping [79], can be used to calculate the
spectral positions and line shapes of the resonances for various geometries, such
as nanorods, nanoplates, and nanospheres.

For larger nanostructures, it is also possible to regard a nanostructure as an effective
Fabry–Perot cavity for surface plasmons. This treatment is justified when the char-
acteristic dimension of the structure is comparable to or larger than half the effective
surface plasmon wavelength, and it permits the determination of multiple resonance
frequencies. For example, in a nanorod, the resonant frequencies can be derived by
requiring one round trip of the guided mode to result in a phase accumulation of an
integer multiple of 2π, as follows:

mλeff � 2L� 2ϕr; (3)

where L is the length of the nanorod, ϕr is a reflection phase that can be related to the
extension of the field outside the ends of the rod, and λeff is the effective plasmon
wavelength, which has been shown to obey the following empirical relation [80]:
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λeff � n1 � n2

�
λ

λp

�
; (4)

where n1 and n2 are constants related to the geometry and the dielectric environment,
respectively, and λp is the plasma wavelength. The conditions for LSPRs now become
dependent on the effective wavelength λeff rather than the free-space wavelength.
Typical ratios of λ∕λeff are approximately 2–3 in the visible and near-infrared regimes,
thus permitting deep subwavelength sizes for the nanoresonators. Using this model, it
is possible to gain valuable insight into the antenna responses of different metallic
shapes, such as nanodisks [81–84], nanorods [80,85,86], split-ring resonators
(SRRs) [87,88], and V-shaped antennas [35,89,90].

The case of a single plasmonic resonance, which provides only partial control over the
phase and amplitude of the scattered light, has been considered above. To achieve
complete control over the wavefront, however, phase modulation over the full 2π
range is necessary. This can be achieved by considering more complex configurations,
such as a single antenna that supports multiple independent resonances [35,91],
coupled antenna resonances [92], and array geometries that take advantage of the
polarization of light to achieve any desired phase [93,94]. Next, we will discuss
coupled plasmonic nanoresonators and the possibility of multiple simultaneous res-
onances in dielectric nanoresonators. Then we will review the concepts of detour and
geometrical phase acquisition.

When two or more metallic nanoparticles are brought into proximity, the near-field
and radiative interactions become substantial, and as a result, changes in the optical
response of the coupled plasmonic system are evident. Because each of the nano-
particles can be described as a harmonic oscillator, the interaction among closely
packed nanostructures can be described by using the coupled harmonic oscillators
model [80]. Among the various existing methods, a more thorough description of
the changes in the collective modes of such assembled resonators is given by the

Figure 2

Plasmon hybridization of metallic nanoparticles. Two identical spherical metallic
nanoparticles hybridize, thus producing four spectrally separated modes of the
interacting system. The charge distributions over the two particles are shown for
the different possible modes of the coupled and uncoupled states. The depicted mode
splitting can be derived by using either the plasmon hybridization model [92,95,96]
or the coupled dipole approximation [77,97,98]. Reprinted with permission from
Myroshnychenko et al., Chem. Soc. Rev. 37, 1792–1805 (2008) [77].
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plasmon mode hybridization method [92,95,96] or the coupled dipole approxima-
tion [97,98]. One of the prominent features of a strongly coupled system that is
predicted by these methods is mode splitting, in which the strong near-field interac-
tion results in rapid energy transfer between the individual resonators results in new
plasmonic modes of the combined system. An example of this phenomenon is the
coupling of the dipolar plasmonic modes of two neighboring metallic spheres, as
shown in Fig. 2. The fundamental modes of the two nanoparticles hybridize and pro-
duce spectrally separated modes of the interacting system. The aforementioned
methods and other analytical techniques can be used to engineer coupled plasmonic
nanoparticle geometries that provide greater control over the amplitude and phase of
the scattered light. This capability is beneficial for the design of any arbitrary desired
wavefront.

In addition to plasmonic metasurfaces, in recent years, several groups have also stud-
ied dielectric metasurfaces [70,91,99–103], which are planar devices composed of
high-refractive-index dielectric materials. Using dielectric rather than metallic nano-
structures offers the possibility to overcome the high absorption and backward
scattering amplitudes associated with metals, thereby enabling the realization of nano-
devices with high transmission efficiencies. It is important to mention that the physical
mechanism of such devices is cardinally different, as will be described briefly. In the
context of beam shaping, it has been shown that by using dielectric nanoparticles, the
phase of scattered light can be controlled either by operating near a resonance [91] or
by means of continuous phase accumulation through nanoparticles that act as Fabry–
Perot resonators [99]. The first method relies on dielectric Mie resonances based on
displacement currents. These resonances can either be electrical or magnetic in nature;
both types have comparable scattering amplitudes, and can be structured to coexist in
the same spectral range, thus giving rise to intriguing interference effects, such as
unidirectional scattering and full phase control of the scattered light. More specifi-
cally, because each dipolar resonance is associated with a 0 to π phase shift of
the scattered light, a combination of the two types of resonances, i.e., electrical
and magnetic dipole resonances, enables control over the full 2π range. The second
approach relies on treating the high-refractive-index nanostructures as low-Q-factor
Fabry–Perot resonators, as also presented in Subsection 2.4 [99]. The effective re-
fractive index for each mode in the resonator is proportional to its diameter,
i.e., its dimension parallel to the surface; thus, different diameters result in different
phase accumulation. Through this method, it is also possible to control the phase of
the scattered light separately for each polarization using edge-truncated elliptical
nanoparticles.

The mechanisms described above concern the use of single or coupled particles to
control scattered light. However, the spatial arrangement of a metasurface composed
of multiple nanoresonators enables further control of the scattered light’s phase pat-
tern, by means of either a location-based detour phase [104,105] or the ability to take
advantage of the polarization of the light through what is known as a geometrical
phase [106,107].

2.2. Detour Phase
Beyond the possibility of controlling the phase of waves scattered from a metasurface
by adjusting the response of the inclusions, there is an inherent degree of freedom
hidden in the spatial arrangement of the inclusions. This concept, known as the detour
phase, is the basis for the design of diffractive optical elements and serves as the
underlying approach for the generation of binary and regular CGHs [104,105].
The simplest and best-known example taking advantage of this characteristic of wave
interaction is a binary diffraction grating. In this case, without any control over the
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phase of the waves scattered from different positions along the grating, the light is
deflected into noncollinear directions. In this case, light that is simultaneously scat-
tered from two different locations separated by a distance Δx will acquire a relative
phase of

Δϕ � Δx
2π

λ
sin�θ�; (5)

where θ is the angle of the scattered light relative to the normal to the plane of the
scatterers. The minimum phase difference that must be acquired such that the two
beams constructively interfere in the far field is 2π, and thus, constructive interference
occurs only for

Δx · sin�θ� > λ: (6)

This result implies that by designing a metasurface with different zones satisfying
Eq. (6) and adjusting its phase profile in accordance with Eq. (5), free manipulation
of light beams can be achieved. Figure 3 illustrates the ability to focus light by using
the detour phase concept. This concept has been used in combination with metasur-
faces to realize various optical elements, including chromatically corrected metasur-
face lenses [108] and broadband dielectric and plasmonic holograms [71,109].

Figure 3

Detour phase. The wavefront can be controlled by means of the transverse spatial
arrangement of the transparent and opaque areas in accordance with the acquired de-
tour phase. The illustrated device is called a Fresnel zone plate (FZP). An FZP focuses
light to a distance f by permitting and blocking the passage of light through regions
that result in constructive and destructive interference, respectively, at the desired
focal point.
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2.3. Geometrical Phase
Another common approach for manipulating relative transmitted and reflected
phases relies on the accumulation of a geometrical phase (GP), also called the
Pancharatnam–Berry phase [106,107]. A phase of this type can be acquired between
two light beams experiencing different variations in their polarization states while
propagating over the same distance. Thus, the GP originates from the interplay be-
tween the polarization states, rather than being related to the dynamical phase acquired
with propagation through a dielectric medium or the phase added to the scattered
light by any scattering process. Because of the natural treatment of light polarization
states that is available within the Poincaré sphere framework, this framework is com-
monly used to quantify GP accumulation. A typical design using the GP concept relies
on laterally inducing different polarization variations of a propagating beam, as
enabled by metasurface comprising nanoparticles with different orientations. As an
example, we consider the case depicted in Fig. 4, in which light with right circular
polarization (RCP) is shone on a surface consisting of nanorods with two different
orientations. The first orientation is parallel to the x axis, and the second is rotated
by an angle θ. Thereafter, through the use of a polarizer and a quarter-wave plate, light
with left circular polarization (LCP) is measured. By plotting on the sphere the
paths of two beams (shown in red and green in Fig. 4) that have been subjected
to different polarization changes, the relative GP can be determined through the fol-
lowing relation [93]:

ϕg �
1

2
ΔΩ; (7)

Figure 4

Geometrical phase. Two paths with different polarization changes, resulting in the
acquisition of a relative geometrical phase, are shown on the Poincaré sphere.
Light in the RCP state is shone on a surface with two nanorod orientations, and
the projection of the interference between the two beams in the LCP state is measured.
The acquired relative phase between the two different paths is ϕg � ΔΩ∕2, whereΔΩ
is the solid angle encompassed by the paths.
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where ϕg is the geometrical phase, and ΔΩ is the solid angle encompassed by the two
paths on the Poincaré sphere. To obtain some intuitive insight into the origin of the GP
acquisition described above, we consider a single nanorod that is tilted at an angle θ
with respect to the x axis and illuminated by light with a general polarization state and
qualitatively analyze how the GP shift between the final RCP and LCP states arises.
For any polarization state, the incident light can be decomposed into LCP and RCP
states. The greatest scattering amplitudes from the nanorod will be achieved for an
electric field polarized parallel to the long axis of the nanorod. Thus, a nanorod rotated
at angle θ will strongly react only when the incident light polarization is rotated by an
angle θ. If the RCP state has rotated by θ to be parallel to the long axis of the rod, then

Figure 5
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the LCP state must rotate by 2π − θ. Thus, the light components in the two circularly
polarized states will differ in phase by 2θ. By varying the rod orientation angle θ
between 0 to π, complete control over the full 2π range can be achieved while main-
taining a steady transmission amplitude [70].

2.4. Examples of the Linear Shaping of Light by using Metasurfaces
Linear beam shaping by means of metasurfaces has been a fruitful area of research in
the past few years and has been utilized for a variety of applications. Figure 5 shows
several examples of recent works that have exploited the ability to control the phase
and amplitude of scattered waves by means of either the response of a single nano-
structure [Figs. 5(c), 5(f), and 5(g)] or the arrangement of an entire metasurface
[Figs. 5(a), 5(b), 5(d), and 5(e)], for both plasmonic [Figs. 5(a)–5(c)] and dielectric
[Figs. 5(d)–5(g)] metasurfaces. Phase control based on single-particle response
has been achieved in these works either by operating in a nonresonant regime
[Fig. 5(g)] or by exploiting the total impact of multiple resonances in the same nano-
structure [Figs. 5(c) and 5(f)]. At the level of the arrangement of the entire metasur-
face, phase control has been achieved in these works by means of either a detour phase
[Figs. 5(a) and 5(b)] or geometrical phase acquisition [Fig. 5(d)].

Examples of the linear shaping of light by using metasurfaces. (a) Artist’s view of a
multilayered chromatically corrected metasurface lens. Through the vertical stacking
of three different Fresnel zone plates based on plasmonic nanoparticles designed to
operate in the red, green, and blue regimes of the visible spectrum, a spot of white light
at the focal point can be generated under white light illumination. Images of the focal
region of the lens are shown in (b) for three laser wavelengths of 450 nm, 550 nm, and
650 nm to show the chromatic aberration correction. (c) Finite-difference time-domain
simulation of a wavefront created by light scattered from eight “V”-shaped nanoan-
tennas with steady amplitude and phase variations over the full 2π range. Phase con-
trol is achieved via coupled resonances at the same nanoantenna. The resulting device
can conceptually guide light in any desired direction through appropriate spacing of
the scattering nanoantennas. (d) Scanning electron microscope image of a dielectric
metasurface that operates as a blazed grating on the basis of the GP concept. (e) The
measured diffraction patterns of the metasurface shown in (d) under illumination with
RCP light (top), linearly polarized light (middle), and LCP light (bottom) at a wave-
length of 550 nm. (f) Illustration of a generalized Brewster effect achieved with a
silicon metasurface. By means of the interplay between electrical and magnetic di-
poles, interference can be exploited to eliminate the reflection of s-polarized light
while enhancing the reflection of p-polarized light, as shown in the simulated reflec-
tion curves. (g) Illustration of a dielectric metasurface designed for independent
polarization and phase control at each unit cell. The metasurface is composed of
elliptical amorphous silicon posts of the same height but different diameters and ori-
entations. The orientation of each ellipse relative to the incident light polarization
affords amplitude control, and the diameter of each ellipse determines the phase
acquired during propagation through the surface. (a), (b) Reproduced from [108]
under the terms of the Creative Commons Attribution 4.0 International License.
(c) From Yu et al., Science 334, 333–337 (2011) [35]. Reprinted with permission
from AAAS. (d),(e) From Lin et al., Science 345, 298–302 (2014) [70].
Reprinted with permission from AAAS. (f) From Kuznetsov et al., Science 354,
aag2472 (2016) [91]. Reprinted with permission from AAAS. (g) Reprinted by per-
mission from Macmillan Publishers Ltd.: Arbabi et al., Nat. Nanotechnol. 10, 937–
943 (2015) [99]. Copyright 2015.
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3. NONLINEAR OPTICAL INTERACTIONS WITH METASURFACES

The strong confinement of light to subwavelength regimes that occurs naturally in
most metasurfaces also promotes enhanced nonlinear optical processes. Similarly
to the response of linear metasurfaces, the amplitude, phase, and polarization of the
local nonlinear response of the metasurfaces can be tuned by modifying the geometry.
Therefore, in addition to the linear manipulation of light, manipulation of the effective
nonlinear tensor can also be performed to tailor a functional nonlinear metasurface.

3.1. Local Nonlinear Polarization
Below, we will briefly elaborate on optical responses in nonlinear media. We will then
focus on the fundamental aspects of optical nonlinearity that are essential for describ-
ing the nonlinear processes in metasurfaces. Further description can be found in [31].

The relation between the induced polarization of a material and the applied electric
field is, in general, nonlinear. Their dependence, using the SI unit system, is usually
described in the form of a Taylor expansion:

P�E� � ϵ0�χ�1�E� χ�2�E2 � χ�3�E3 �…�; (8)

where χ�1�, χ�2�, and χ�3� are the linear, quadratic, and cubic susceptibilities, respec-
tively, and higher-order susceptibilities are not shown. The nonlinear terms in this
expansion allow for the description of the generation of new frequencies and addi-
tional nonlinear phenomena that emerge from photon–photon interactions.

For example, for a general fundamental field composed of two different frequencies,
ω1 and ω2, the quadratic nonlinearity induces oscillating polarizations at new
frequencies, 2ω1, 2ω2, ω1 � ω2, and ω1 − ω2, as well as a DC polarization. In these
cases, the nonlinear oscillating polarization takes the form of a second-order term,
P�2� � χ�2�E2, which acts as a source for the wave equation that propagates the
generated radiation in space and time:

∇2E − n2

c2
∂2E
∂t2

� 1

ϵ0c
2

∂2P�2�

∂t2
: (9)

The quadratic nonlinear processes are called three-wave mixing (TWM), in which
frequency doubling, summation, and differentiation are termed second-harmonic gen-
eration (SHG), sum frequency generation (SFG), and difference frequency generation,
respectively. The ability to manipulate a spatially nonlinear polarization by using a
metasurface enables the control and shaping of the generated radiation. This is the
underlying mechanism for the nonlinear shaping of light by using metasurfaces,
which can be achieved either by controlling the shape of the incident field or by
designing the local quadratic nonlinearity on the metasurface.

For example, for the case of SFG, the quadratic nonlinear interaction on a metasurface
can be described in the frequency domain as follows:

P�2�
i �ω1 � ω2; x; y� � ϵ0χ

�2�
ijk �ω1 � ω2;ω1;ω2; x; y�Ej�ω1; x; y�Ek�ω2; x; y�; (10)

where x and y are spatial coordinates along the metasurface and the z coordinate is
absent, owing to the two-dimensional nature of metasurfaces. The nonlinear suscep-
tibility χ�2�ijk is a third-rank tensor that is usually defined by the material properties, and
the participating frequencies. Here we define ω1 and ω2 as the fundamental frequen-
cies and ω1 � ω2 marks the generated frequency [31].
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It can be seen from Eq. (8) that in centrosymmetric materials, in which symmetry
conditions locally require P�E� � −P�−E�, all of the even-order terms in the expan-
sion must disappear. Therefore, quadratic interactions, for example, cannot be
observed in bulk centrosymmetric materials.

3.2. Sources of Nonlinearity in Metasurfaces
The great success of the development of linear metamaterials with unique properties
[35,68–75,91,99,108] led to the natural progression to exploration of nonlinear optical
interactions with these new artificial compounds. In the following section, we will
present a brief overview of the different sources of nonlinearities in metasurfaces.
Most of the work done in the field of nonlinear metasurface, and specifically nonlinear
shaping of light, is based on plasmonic metasurfaces. Therefore, in this tutorial we
mainly concentrate on this type of metasurface. However, the field of dielectric non-
linear metasurfaces, which is now beginning to grow, holds within a great promise.
For example, nonlinear metasurfaces composed of silicon nanodisk-based metamo-
lecules [110], Fano-resonant silicon structures [111], and GaAs nanopillar resonators
[112] can be used to host the nonlinear interaction with lower loss and a flexible con-
trol of the bandwidth. As this field will continue to evolve, the majority of the concepts
described in the following sections will be relevant for shaping of light also with di-
electric nonlinear metasurfaces.

3.2a. Integrating Metasurfaces with Conventional Nonlinear Materials

The most straightforward way to generate nonlinearities and to enhance the nonlin-
earity of a metasurface is to use conventional nonlinear materials to construct the
metasurface or to embed the metasurface in a nonlinear platform. For example, im-
plementing plasmonic nanoantennas inside a nonlinear crystal can enhance the overall
effect, because the nonlinear material serves as a coupler between the linear and non-
linear modes. This phenomenon has been demonstrated, for example, in the forms of
hole arrays and SRR arrays over GaAs as well as bowtie antennas over LiNbO3 and
more [113–116]. In addition to conventional nonlinear crystals, in which the nonlinear
interaction is usually between virtual electronic states, it is possible to use resonant
nonlinear materials to enhance the interaction [31]. This application has been shown,
for example, by using multiquantum wells (MQWs) band-engineered to enhance spe-
cific TWM processes [117–120]. One of the factors limiting the use of strong non-
linearities in MQWs is that the transitions are polarized in the direction perpendicular
to the layers, and therefore, they are not accessible for plane waves at normal inci-
dence. To address this shortcoming, metasurfaces have been used to align the funda-
mental field polarization in the required direction, along with matching the plasmonic
resonances and intersubband transitions, thus resulting in giant optical nonlinearities
[53,121–123] and nonlinear functionality, as depicted in Fig. 6(a).

3.2b. Creating Artificial Quadratic Nonlinearity

Another important source of strong quadratic nonlinearity in metasurfaces is sym-
metry breaking at the interfaces of the nanostructures. It is well known that interfaces
support strong quadratic nonlinearities [128–130]. In nanostructured materials, in
which interfaces are abundant, there are very strong local quadratic nonlinearities,
which can be further enhanced by field confinement. This enhancement is one of the
motivations for using metasurfaces as artificial nonlinear materials. However, owing
to the complex optical and plasmonic mode structure, it is important to understand the
participating optical modes, their field overlap, and their radiation properties to
enable the design of efficient nonlinear metasurfaces. Below, we present a model that
captures the elementary physics of quadratic nonlinearity in metal nanostructures and
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hence can be used to enhance and optimize the nonlinear interaction in these artificial
optical elements.

In the context of plasmonic metamaterials, metals such as gold and silver are com-
monly used to construct the fundamental elements of these materials. These metals do
not possess intrinsic symmetry breaking; consequently, their bulk quadratic suscep-
tibility, χ�2� � 0. However, it has been specifically shown that quadratic processes
involving field components that are normal to the surface are substantially stronger
[131–135]. One common way to model the nonlinearity on a metal surface is by using

Figure 6

Different types of nonlinear metasurfaces. (a) Multiquantum well structure coupled to
a plasmonic structure, resulting in a giant enhancement of the nonlinear optical in-
teraction. (b) L-shaped metallic resonators. The arrangement of the orientations de-
fines the nonlinear polarization interaction. (c) G-shaped resonators exhibiting optical
chiral dichroism. (d) Triangular prism nanocavities. (e) Structure consisting of
coupled resonators. The nonlinear field that is generated at the rod penetrates the discs
and is emitted as light. The asymmetry of the structure controls the emission effi-
ciency. (a) Reprinted with permission from [53]. Copyright 2016 Optical Society
of America. (b) Reprinted with permission from Husu et al., Nano Lett. 12, 673–
677 (2012) [124]. Copyright 2012 American Chemical Society. (c) Reprinted with
permission from Valev et al., Nano Lett. 9, 3945–3948 (2009) [125]. Copyright
2009 American Chemical Society. (d) Reprinted with permission from Salomon et al.,
J. Phys. Chem. C 117, 22377–22382 (2013) [126]. Copyright 2013 American
Chemical Society. (e) Reprinted with permission from Gennaro et al., Nano Lett.
16, 5278–5285 (2016) [127]. Copyright 2016 American Chemical Society.

324 Vol. 10, No. 1 / March 2018 / Advances in Optics and Photonics Tutorial



a hydrodynamic model [136,137], in which the conduction electrons in the metal are
regarded as forming an electron gas. In this case, the modified Euler’s flow equation
takes the following form:

m�
e n

�
∂v
∂t

� �v · ∇�v� γv

�
� en�E� v ×H� − ∇p; (11)

where v is the electron velocity; E and H are the electric and magnetic EM field com-
ponents; γ, n, e, and m�

e are the scattering rate, density, charge, and effective mass,
respectively, of the conduction electrons; and p is the electron quantum pressure due to
Pauli’s exclusion rule. The electron acceleration is represented by the first term on the
left-hand side, the second term represents the convection of the electrons, and the third
term represents the damping force. On the right-hand side, the first term represents
the driving EM forces, and the second term represents the quantum pressure forces
exerted on the electrons.

The polarization is derived from the electron motion as _P � env, along with the con-
tinuity relation n � n0 − 1

e∇ · P, where n0 is the rest electron density. Thus, the flow
equation takes the following form:

P̈� 1

n0e
��∇ · _P� _P� � _P · ∇� _P� � γ _P

� n0e
2

m�
e
E − e

m�
e
E�∇ · P� � e

m�
e

_P ×H � kBT∇�∇ · P�
m�

e
: (12)

This equation can be solved in a perturbative manner, i.e., by spanning the different
fields, E, H and P, with oscillatory harmonic components. Solving for the fundamen-
tal polarization yields the dependence of the linear polarization on the driving fields.
The same equation, solved for the nonlinear polarization, yields the dependence on the
calculated linear polarizations, owing to the nonlinear terms in the relation. The non-
linear polarization acts as a source term in the wave equation, Eq. (9), for the radiation
of light at new frequencies. The entire solution process is usually performed numeri-
cally [132,137–140], and the induced linear polarization gives rise to new generated
frequencies through the surface currents. In the case of SHG, the surface current can
be approximated to take the following form [137]:

KNL �
iω

n0e

�
t̂�P⊥P∥� � n̂

1

2

3ω� iγ

2ω� iγ
�P⊥�2

�
; (13)

where ω is the fundamental frequency; n̂ and t̂ are the unit vectors in the directions
normal and transverse to the surface, respectively; and P⊥ and P∥ are the polarization
components of the fundamental frequency (FF) field in the directions corresponding to
n̂ and t̂, respectively.

The existence of strong surface nonlinearity does not guarantee that the nonlinear
sources will radiate to the far field. In the case of macroscopic, yet sub-
diffraction-limit centrosymmetric structures, for each polarization element, there is an
opposite polarization element that interferes destructively in the far field; conse-
quently, the source does not radiate [135]. Therefore, breaking of this symmetry
via the geometry of the nonlinear nanoparticles is also needed. This has been dem-
onstrated both theoretically and experimentally for various structures, such as SRRs
[44,45,137,141], L-shaped [90,124,142,143], T-shaped, chiral G-shaped [125,144],
and triangular [145] nanoparticles, nonsymmetric dimers [146] and metamolecules
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[127,147], and some of their complementary nanocavities [126,148,149]. A few
examples are presented in Fig. 6. Figures 7(a) and 7(b) present the SH fields emitted
from a bar antenna and an SRR antenna. In the case of the rod, two opposite dipoles
are excited, which destructively interfere in the far field, whereas in the case of the
noncentrosymmetric SRR, two dipoles are excited in the same direction and emit in a
constructive manner to the far field. Cubic nonlinearity, however, does not require
symmetry breaking at the level of either the crystal structure or the inclusion geometry.
In fact, in addition to surface effects, cubic nonlinearity may occur simply because of
conventional bulk χ�3� properties. Consequently, cubic nonlinear effects have been

Figure 7

Models for the estimation of SHG efficiency. (a) Numerical simulation of the SHG
from a nanorod in accordance with the hydrodynamic model of an electron gas. The
SH mode acts as two opposite dipoles, which interfere destructively with each other
and consequently do not radiate to the far field. (b) The SHG from an SRR simulated
in the same way as in (a). Owing to the symmetry breaking, two SH dipoles along
the arms are excited, radiate constructively, and emit to the far field. (c) Nonlinear
scattering model for predicting the efficiency of SHG. The overlap integral of the
participating radiating modes, i.e., E�ω� and E�2ω�, is proportional to the effective
nonlinear coefficient. (c) Reprinted by permission from Macmillan Publishers Ltd.:
O’Brien et al., Nat. Mater. 14, 379–383 (2015) [141]. Copyright 2015.
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observed from metasurfaces with simpler geometries, such as nanodisks, nanorods,
surfaces with rectangular holes, bowtie antennas, and macroscopic gratings
[81,110,150–159].

3.3. Harmonic Mode Matching
Nonlinear plasmonic nanoresonators interact strongly when excited at resonance. In
this case, the field is confined to the nanoresonator, and the local nonlinearity is en-
hanced. This phenomenon has been used to introduce plasmonic-based nonlinear en-
hancement in a conventional nonlinear crystal embedded with a plasmonic
metamaterial [160] and to enhance the cubic nonlinearity in nanocavities [152],
and it is generally applicable to all nonlinear plasmonic metamaterials. Resonance
occurs for specific spatial modes of a nanoresonator, and to achieve efficient nonlinear
mode conversion, it is necessary to ensure good field overlap between the generated
nonlinear local field and the radiating mode. This concept is described by the non-
linear scattering theory [141,161,162]. In SHG on a metal nanoresonator, for example,

χ�2�eff ∝
Z
S
χ�2�⊥⊥⊥E

2
⊥;ω�r�E⊥;2ω�r�dS; (14)

in which the effective quadratic nonlinear susceptibility χ�2�eff is proportional to the
mode mixing integrated over the surface of the nanoresonator. Here, χ�2�⊥⊥⊥ denotes
the nonlinear tensor element that mixes the normal field components, E⊥;ω and
E⊥;2ω, which correspond to the fundamental and SH mode fields, respectively.
Figure 7(c), taken from O’brien et al. [141], illustrates the concept of mode matching
on SRRs for the enhancement of nonlinear emission.

When two or more plasmonic nanoparticles are in proximity, it is possible to harness
the mode coupling and overlap in this multiresonant structure for nonlinear interaction
enhancement, as has been demonstrated both theoretically and experimentally for a
three-nanorods configuration [163], a V-shape and rod configuration [164], T-shaped
dimers [146], and a nonsymmetric configuration consisting of a rod and two disks [127].

4. CONTROL OVER LOCAL NONLINEAR TENSOR ELEMENTS FOR THE
NONLINEAR SHAPING OF LIGHT

The ability to tailor the wavefront of the light emitted from a nonlinear material is
mostly based on the ability to change the spatial characteristics of the nonlinear in-
teraction, i.e., the ability to locally modify the nonlinear susceptibility tensor. The
matrix elements of this tensor are, in general, complex terms that set the amplitude
and phase of each polarization component of the nonlinear field for any given fun-
damental field. In a conventional nonlinear material, the nonlinear tensor is deter-
mined by the atomic structure of the material, and its manipulation is very difficult.
For example, for quadratic interactions, the most common method of locally control-
ling the χ�2� tensor is through the electric field poling of nonlinear ferroelectric ma-
terials. This method can locally invert the atomic structure and consequently
effectively changes only the sign of the nonlinear coefficient. This method has been
extensively used for controlling TWM interactions and as the basis for the develop-
ment of nonlinear photonic crystals [26,27,32,165–169].

Nonlinear metasurfaces have several major advantages with regard to control over the
nonlinear tensor. As explained above, their responses to an EM field are defined by
their geometry, size and material, thus providing access to a broad and continuous
spectrum of desired linear and nonlinear interactions. Furthermore, the same tech-
nique used to fabricate a uniform structure can be applied for the fabrication of
any arbitrary combination of different types of inclusions in any kind of arrangement.
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This technique allows for full spatial control over the nonlinear tensors of metasur-
faces, in contrast to the case for conventional natural nonlinear crystals. Finally,
three-dimensional nonlinear crystals have fundamental limitations regarding phase
matching owing to the dispersion of the EM waves propagating through them.
Because nonlinear metasurfaces effectively do not have a longitudinal length in the
propagation direction, they are not subject to this disadvantage.

4.1. Control Over Amplitude
There are several ways to achieve local amplitude control of the effective macroscopic
nonlinear coefficients. The most straightforward method is to control the local density
of the meta-atoms. In the simplest approximation, the amplitude of the local average
nonlinear coefficient will be proportional to the number of inclusions per unit area,
χ�2�eff � nβ, where n is the density of the meta-atoms and β is their quadratic nonlinear
polarizability. However, this simplified relation does not hold in certain regions,
owing to near-field coupling between the LSP modes of neighboring meta-atoms
[45,170], as presented in Fig. 8(a), and long-range coupling due to lattice effects.
This coupling can lead to enhancement or degradation of the effective nonlinear
coefficient [171–173].

Another method of controlling the amplitude through the interactions between meta-
atoms is based on far-field interference to decrease the intensity of the emitted light.

Figure 8

328 Vol. 10, No. 1 / March 2018 / Advances in Optics and Photonics Tutorial



When two nonlinear meta-atoms are separated by a sub-diffraction-limit distance, they
act as a single emitter, emitting the sum of the two interfering fields. If both emitters
are assumed to be identical, their emission would interfere constructively. However,
shifting the relative phase between the emitters (as will be described in the following
section) would result in intermediate interference, thus decreasing the emission am-
plitude proportional to cos�Δϕ

2
�, where Δϕ is the phase shift between the emitters

[174]. It is important to note that the phase shift should be symmetric—i.e., the first
meta-atom should be shifted by Δϕ

2
, and the second, by − Δϕ

2
—for the emission to be

in phase with the rest of the metasurface.

At the level of a single meta-atom, in the simplified approach, the local nonlinear
polarization depends quadratically on the field enhancement provided by the LSP
modes in the inclusions, P�2� ∝ E2

local � �EF�2 × E2
inc, where EF is the field enhance-

ment factor associated with the LSP phenomenon and Einc is the incident field. By
changing the nanoparticle morphology, the LSPR can be shaped to provide different
local field enhancements. However, in this case, one must also consider the phase
difference related to off-resonance excitations. In addition, as discussed earlier, the
far-field nonlinear emission depends on the overlap between the fundamental and non-
linear modes of the meta-atom [Eq. (14)]. Therefore, through geometrical tuning of
the structure, e.g., by modifying the ratio between the arms and the total length of an
SRR [50,87,141,162] or the distance between dimers [155,157,163,175], one can vary
the nonlinear efficiency of nanoparticles. This method of controlling the amplitude of
the nonlinear coefficient is presented in Fig. 8(b).

4.2. Control Over Phase
Controlling the relative phase of emitted light is a powerful tool for the design of
optical wavefronts. It is widely used in linear holography [19,176] and in conventional
nonlinear beam shaping [27–30]. In the latter case, the electric field poling of

Controlling the nonlinear tensor at the meta-atom level. (a) SHG from SRR arrays as a
function of the lattice constant and wavelength, showing the effect of long-range cou-
pling between the SRRs on the overall intensity. (b) Amplitude control through the
variation of the ratio between the total length of an SRR and the length of its arms.
(c) Field distribution of the SH modes from inverted SRRs showing opposite SH field
phases. (d) The aspect ratio of a rectangular hole in gold defines the phase of the
emitted FWM signal. As a result, a gradual change in the aspect ratio along the meta-
surface causes the emission angle to tilt. (e) The phase of the four-wave mixing signal
is defined by summing the accumulated linear phase for each of the fundamental
modes. (f) SEM images of chiral metamolecules used to achieve nonlinear chiral di-
chroism. (g) Under excitation with circularly polarized light, the rotation of an inclu-
sion by an angle φ induces a geometrical phase in the nonlinear emission that is
different for each emitted nonlinear circular polarization. (a) Reprinted with permis-
sion from Fig. 2(c) of Linden et al., Phys. Rev. Lett. 109, 015502 (2012) [170].
Copyright 2012 by the American Physical Society. (b) Reprinted by permission from
Macmillan Publishers Ltd.: O’Brien et al., Nat. Mater. 14, 379–383 (2015) [141].
Copyright 2015. (c) Reprinted with permission from Keren-Zur et al., ACS
Photonics 3, 117–123 (2016) [50]. Copyright 2016 American Chemical Society.
(d), (e) Reproduced from [51] under the terms of the Creative Commons Attribution
4.0 International License. With copyright permission. (f) Reproduced from [54] under
the terms of the CCreative Commons Attribution 4.0 International License. With
copyright permission. (g) Reprinted with permission from Kolkowski et al., ACS
Photonics 2, 899–906 (2015) [147]. Copyright 2015 American Chemical Society.
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ferroelectric materials is most commonly used to achieve binary control over the rel-
ative phase between poled and unpoled domains. However, the applicability of this
technique is limited to only a few specific ferroelectric crystals whose atomic struc-
tures can be manipulated. The binary method of phase control has also been demon-
strated in quadratic nonlinear metasurfaces by using the inversion asymmetry of the
inclusions. Instead of inverting the orientation of the atomic structure, as is done in
conventional nonlinear crystals, the orientation of the meta-atomic structure is modi-
fied. This inversion operation in SRRs, for example, has been shown to result in an
opposite relative phase, as depicted in Fig. 8(c) [48,49].

In addition to the binary phase approach, continuous control over the nonlinear phase
has been demonstrated by means of two main approaches. The first considers the
phase accumulated through the linear interaction of each of the participating waves.
As described in the previous section, in the case of single nanoresonators, a phase
response of 0–π around the resonance can be accumulated, depending on the
operation frequency relative to the resonance frequency. In the case of a nonlinear
polarization, the phase of the nonlinear output is described as follows [51]:

ϕ�n� �
X
j

ϕj; (15)

where ϕj is the phase imparted by the resonator to the jth component and ϕ�n� is the
total phase of the nth component of the nonlinear polarization acquired by the inter-
acting fields. Thus, the phase space for light manipulation can be expanded. For
example, for simple, single-resonance nanoresonators in the case of quadratic inter-
action, the full 2π range of manipulation is obtainable. This approach has been dem-
onstrated for the case of four-wave mixing (FWM) in rectangular nanoholes with
varying aspect ratios, in which ωFWM � 2ω1 − ω2, and the corresponding nonlinear
phase was ΔϕFWM ≈ 2ϕ1 − ϕ2, as shown in Figs. 8(d) and 8(e) [51,152].

The phase gained by a nonlinear meta-atom can also be calculated in a numerical
simulation. Thus, the construction of nonlinear phase and amplitude diagrams accord-
ing to geometrical parameters of the meta-atom allow to plan a route in the geomet-
rical parameter space which conserves the amplitude, but varies the phase, or vice
versa [51,177]. In the case of quadratic nonlinearity, this method can be combined
with inversion of the meta-atoms to gain additional phase of π in order to get full
control over the phase.

The second approach is based on a GP. As described in the previous section, light that
is scattered by a resonator excited by circularly polarized light would gain a phase
relative to a similar rotated resonator (see Subsection 2.3). In the nonlinear case, it has
been shown that when an SRR, for example, is excited with circularly polarized FF
light, it emits circularly polarized SH light of both handednesses. The light that is
polarized with the same handedness as the excitation light would gain a phase equal
to the rotation angle, whereas the SH light that is polarized with the opposite handed-
ness would gain a phase of 3 times the rotation angle, as also presented in Fig. 8(f)
[53,178,179]:

χ�2�RRR�Δφ� � χ�2�RRRe
iΔφ; χ�2�LRR�Δφ� � χ�2�LRRe

3iΔφ;

χ�2�RLL�Δφ� � χ�2�RLLe
−3iΔφ; χ�2�LLL�Δφ� � χ�2�LLLe

−iΔφ; (16)

where R and L are the right and left circular polarization components and Δφ is the
rotation angle of the meta-atom. Similarly, it has been shown that the geometrical

330 Vol. 10, No. 1 / March 2018 / Advances in Optics and Photonics Tutorial



phase also can be used to manipulate the phase of FWM phenomena. These mech-
anisms can be used to spatially tailor the nonlinear phase responses of metasurfaces.

4.3. Control Over Polarization
Polarization provides an important means of control over nonlinear interaction. Meta-
atoms of different shapes enable the excitation of different polarization-dependent or
polarization-independent modes [180]. As a consequence, the shapes and orientations
of meta-atoms can be used to locally shape the full nonlinear tensor. For example, it
has been shown that in an SRR, for an incident wave that is polarized parallel to the
base of the SRR, the most efficiently generated nonlinear SH mode is cross polarized
along the arms, owing to the strong linear interaction of the FF light with an LSP mode
of the SRR when the FF light is polarized along the base. This interaction results in the
creation of nonlinear currents along the arms of the SRR [see Fig. 7(b)]. The nonlinear
currents radiate an efficient SH field that is polarized along the arms, thereby defining
a strong χ�2�yxx component (in which the x direction is parallel to the base and the y
direction is parallel to the arms) [44,137]. The most straightforward method of locally
reshaping the nonlinear tensor is to rotate the meta-atom. In the case of an SRR, a
rotation of 90° transforms χ�2� such that the prominent element is χ�2�xyy. A more detailed
structure of the nonlinear tensor can be achieved by using a more complex metamo-
lecule. For instance, for a metamolecule that contains four L-shaped nanoantennas,
each with a certain orientation, the polarization dependence of the metamolecule can
be specifically tailored [see Fig. 6(d)] [124].

The case of circular polarization allows the use of rotational symmetry properties. As
mentioned before, through the rotation of the meta-atom, a relative GP difference can
be acquired. Moreover, if the meta-atom itself possesses a rotational symmetry, it is
possible to control the type of polarization emitted with regard to the input polariza-
tion and the type of nonlinear interaction. For example, nanoantennas with C2 rota-
tional symmetry allow third-harmonic generation (THG) with both left and right
circular polarization, whereas nanoantennas with C4 symmetry do not allow THG
with the same circular polarization. Through a similar mechanism, C3 symmetry
causes the extinction of SHG with the same circular polarization as that used for ex-
citation [145,158,178,181]. An additional characteristic of rotational symmetry is chi-
rality. When the mirror image of a nanostructure does not coincide with itself, it is
considered to be a chiral structure. One of the prominent properties of chiral structures
is that they respond differently to right and left circular polarizations. In the context of
nonlinear metasurfaces, chiral meta-atoms such as twisted-cross nanodimers [182],
metamolecules with threefold symmetry constructed of triangular gold nanoprisms
[147] [as seen in Fig. 8(g)], G-shaped and star-shaped nanoantennas [as shown in
Fig. 6(c)] [183], and twisted arc structures [184] produce nonlinear light emission
with higher intensity if the fundamental light is polarized with a handedness matching
that of the chiral structure.

5. NONLINEAR DIFFRACTION—EXPLOITING THE COLLECTIVE
NONLINEAR RESPONSE

5.1. Collective Effects on Nonlinear Metasurfaces
The assembly of base units into ordered arrays leads to nonlocal collective effects. It
has been shown that the nonlinear conversion efficiency of such an array is dependent
on the lattice constant of the array due to near-field and extended near-field inter-
actions between the individual elements and dilution effects [170,185]. In the other
regime, as mentioned above, when the distances between the nanoantennas are of the
order of the wavelength, the condition for lattice resonances can be fulfilled. This
collective phenomenon strengthens the excitation of the fundamental LSP mode when
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tuned to the corresponding frequency, consequently enhancing the overall nonlinear
efficiency [173]. When the lattice resonance is tuned to the emitted mode, the col-
lective nonlinear interaction also results in a significant enhancement of nonlinear
emission [172]. Recently, it has been shown that the effective nonlinear quadratic
polarizability of the meta-atoms in such an array for the case of TWM and normal
incidence exhibits behavior of the following form [172]:

βeff�ω3;ω1;ω2� �
βs�ω3;ω1;ω2�

�1 − S�ω1�αs�ω1���1 − S�ω2�αs�ω2���1 − S�ω3�αs�ω3��
; (17)

where ω1 and ω2 are the frequencies of the impinging waves; ω3 � ω1 	 ω2 is the
generated nonlinear frequency; αs and βs are the single-particle linear and quadratic
polarizabilities, respectively; and S�ω� is the retarded dipole sum, which encompasses
the collective array response. This expression for the nonlinear polarizability βeff takes
a form similar to that of the quadratic susceptibility of the local Miller’s rule [186],
whereas the localized resonances that give rise to the enhanced χ�2� in Miller’s rule
are replaced with the linear and nonlinear surface lattice resonance conditions,
RefS�ωk�αs�ωk�g � 1 (for k � 1; 2) and RefS�ω3�αs�ω3�g � 1, respectively.
Equation (17) is derived by extending the coupled dipole approximation to the non-
linear regime for the case of TWM. When either the separation between the meta-
atoms or the modulation period of the amplitude or phase of the nonlinear emission
is larger than the output wavelength, diffraction effects start to govern the far-field
emission patterns, and such metasurfaces can be analyzed as nonlinear photonic
crystals.

5.2. Nonlinear Photonic Crystals
The theory of nonlinear photonic crystals for quadratic nonlinear materials was in-
troduced in 1998 by Berger [165]. It has been shown that for a nonlinear photonic
crystal in which χ�1� is uniform and χ�2� is periodically modulated, the momentum in
the nonlinear interaction must be conserved up to a reciprocal lattice translation. For a
three-dimensional nonlinear photonic crystal, the nonlinear momentum conservation
relation becomes

kG �
X
i

ki � G; (18)

where the ki are the wave vectors of the generating waves, kG is the wave vector of the
generated wave that can be matched in the nonlinear interaction on the lattice, and
G � m1K1 � m2K2 � m3K3 is the lattice momentum vector, where the K1;2;3 are the
primitive reciprocal lattice vectors and the m1;2;3 are integers [165]. When a nonlinear
interaction obeys momentum conservation, in addition to its inherent energy conser-
vation, the interaction becomes efficient. Owing to the dispersion in natural materials,
which leads to inherent momentum mismatch in nonlinear interactions, nonlinear
photonic crystals are extensively used to achieve efficient frequency conversion
[32,165,166].

The theory of nonlinear photonic crystals can be reduced to two-dimensional optical
structures, i.e., for nonlinear metasurface-based photonic crystals. In these cases, the
periodic modulation can be applied by subwavelength changes in the meta-atomic
structure (e.g., phase control by rotation of the nonlinear meta-atom) or by subwave-
length changes in the inter-meta-atoms distances. However, in order to apply the
concepts of nonlinear photonic crystals for shaping the emitted light, generally,
the modulation period must be longer than the emitted wavelength. Such modulation
period defines the available reciprocal lattice vectors that allow to fulfill the
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momentum matching condition for the generated light, as will be demonstrated in the
following section. The two-dimensional nature of metasurfaces allows periodic mod-
ulations only in the transverse directions. Along with the assumption of incident fields
in the form of plane waves, i.e., Eω�r� � Eωe

ik·r, the expression for the nonlinear
polarization generated in the SFG process presented in Eq. (10) can be written as

Pω3
�x; y; z0� � ϵ0χ

�2��x; y; z0�Eω1
Eω2

ei�k1�k2�·r; (19)

where z0 is the position of the metasurface. In the case of a one-dimensional periodic
modulation of the quadratic nonlinear coefficient, for example, the coefficient can be
expanded into a Fourier series of the following type:

χ�2��x; y� � χ�2�
X
m

ame
i2πmΛ x; (20)

where am is the m th Fourier component of the modulation function and Λ is the lattice
constant. Thus, in this case, each term effectively adds a phase of 2πm

Λ x to the mth
component of the spatial nonlinear polarization. This addition is equivalent to the
addition of the transverse momentum mKx � 2mπ

Λ x̂ by the lattice, thus leading to non-
linear diffraction. For the case of SFG, for example, the nonlinear polarization takes
the following form:

Pω1�ω2
�x; y; z0� � ϵ0χ

�2�
X
m

amEω1
Eω2

ei�k1�k2�mKx�·~r; (21)

where, owing to the two-dimensionality of the metasurface, the z component adds
only a uniform phase to the interaction. Therefore, only the parallel components
of the momentum are included in the momentum conservation, similarly to the non-
linear Raman–Nath relation [187]:

k∥3;m � k∥1 � k∥2 � mKx (22)

and

k⊥3;m �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
n�ω3�

ω3

c

�
2 − jk∥3;mj2

s
; (23)

where n�ω3� is the refractive index of the medium of propagation. The result is a
specific angle in which the nonlinear radiation will propagate. Because the metasur-
face has a deep subwavelength thickness, in principle, the nonlinear emission is sym-
metric both forward and backward. Notably, in the case of different refractive indices
in the different directions, the amplitude of emission and the corresponding wave vec-
tors are affected. In the case of incident beams that are normal to the unmodulated
crystal axis, the diffraction angle is given by

sin θSFG;m � k∥3;m
jk3j

� c

n�ω3�
k∥1 � k∥2 � mKΛ

ω1 � ω2

: (24)

For the case of SHG from a metasurface in a homogenous environment, this expres-
sion can be reduced to
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sin θ2;m � sin θ1 � m
λ1
2Λ

; (25)

as is also illustrated in Figs. 9(a)–9(c).

These concepts have been demonstrated for the case of nonlinear metasurfaces. Segal
et al. [48] have reported the deployment of metasurfaces consisting of arrays of
periodically inverted SRRs to obtain a nonlinear photonic crystal suitable for the
SH radiation. The expected nonlinear diffraction pattern has been observed from the
one-dimensionally periodic structure, as depicted in Figs. 9(d)–9(f). The concept of
nonlinear metasurface photonic crystals (NLMPCs) for controlling the direction of
emission has also been demonstrated for SHG and FWM by using binary modula-
tion of the nonlinear coefficient [48,49,149] and phase gradient metasurfaces
[51,53,177–179].

Because both the one-dimensional and two-dimensional patterns follow Raman–Nath
diffraction [Eq. (25)], the excitation wavelength and the lattice constant can be varied

Figure 9

Nonlinear diffraction. (a) Periodic modulation of the effective nonlinear coefficient
can be achieved by a periodic variation in the orientation of the SRRs. As a result,
the reciprocal space is spanned by the lattice momentum vectors. (b), (c) Two photons
with momentum k1 at (b) normal incidence and (c) oblique incidence result in SHG
emission that complies with momentum conservation of the sum of the momenta of
the incident photons and the lattice momentum, in agreement with Raman–Nath dif-
fraction. (d) SEM image of a nonlinear metasurface photonic crystal consisting of
periodically inverted SRRs. (e) Fourier space imaging of SH emission from the sample
depicted in (d), showing diffraction corresponding to the periodicity and wavelength.
(f) All-optical scanning up to θSH � 30° obtained in accordance with Eq. (25) by ad-
justing the wavelength and period (i.e., KΛ). Reprinted by permission fromMacmillan
Publishers Ltd.: Segal et al., Nat. Photonics 9, 180–184 (2015) [48]. Copyright 2015.
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to adjust the diffraction angle, i.e., the beam position in the Fourier plane, thereby
enabling all-optical control of the deflected beams [Fig. 9(f)]. In addition to one-
dimensional modulations, two-dimensional NLMPCs with square and hexagonal
lattice structures have been shown to generate diffraction patterns with fourfold
and sixfold symmetries, respectively. A quasi-periodic Penrose tiling structure has
been shown to produce 10-fold symmetry in the deflected beams. These structures
are depicted in Figs. 10(a)–10(d).

6. NONLINEAR LIGHT SHAPING INTO BEAMS AND ARBITRARY IMAGES

6.1. Nonlinear Focusing of Light
The concept of diffraction from a periodic structure can be extended to the creation of
nonlinear metasurface lenses. The angle of diffraction from each point on the metasur-
face is defined by the local periodicity; therefore, it is possible to engineer the detour
phases from all points on the metasurface to interfere constructively at a focal point.
This type of lens, known as a Fresnel zone plate, has been used to concentrate the
SH emission from a NLMPC, in its binary form [48]. The NLMPC is formed of rings
of SRRs with alternating orientations. The radius of the nth ring obeyed

rn �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nf λSH � n2λ2

SH

4

q
, where λSH is the SH wavelength and f is the focal length.

The SHG Fresnel zone plate and its behavior are depicted in Figs. 11(a)–11(b).

Another method of concentrating nonlinear light emission is to imitate the phase front
of a spherical lens. Using the phase control achieved by varying the aspect ratios of
rectangular nanocavities, a nonlinear metasurface has been designed to generate FWM

wavefronts with a phase obeying ϕ�r� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � f 2

p
[51]. The FWM light generated

from this metasurface has been concentrated to a nearly diffraction-limited

Figure 10

Two-dimensional metasurface-based nonlinear photonic crystals. (a) SEM image of a
square lattice nonlinear metasurface, with the corresponding square SH diffraction
pattern shown in (b). (c) SEM image of a nonlinear hexagonal lattice and (d) its
corresponding hexagonal SH diffraction pattern. Reprinted by permission from
Macmillan Publishers Ltd.: Segal et al., Nat. Photonics 9, 180–184 (2015) [48].
Copyright 2015.
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spot. The metasurface and its nonlinear emission intensity profile are depicted in
Figs. 11(c)–11(d).

Nonlinear focusing with metasurfaces has also been extended to the dual-layer case, in
which two focusing nonlinear metasurfaces operating at the THG frequency, each
designed for a different orthogonal polarization and a different focal length, have been
fabricated one on top of the other, creating a functional polarization-dependent non-
linear lens [52].

6.2. Nonlinear Image Encoding on a Metasurface
As discussed above, the possibilities of light shaping are much vaster than the simple
diversion and focusing of the generated light. Harnessing the possibility to locally
control the polarization, amplitude, and phase of a nonlinear point source on a sub-
wavelength scale enables the formation of structures for complex nonlinear beam
shaping and nonlinear holographic devices. In addition, regardless of the propagation
of the light from such a metasurface, several methods have been presented for forming
a nonlinear image on the metasurface, i.e., directly in the optical near field.

Figure 11

Nonlinear metasurfaces based lenses. (a) Nonlinear metasurface Fresnel zone plate
composed of gold SRRs. (b) SH imaging of the metasurface depicted in (a) and
the plane 1 mm away from the surface, showing the focusing of the SH light to a
focal point. (c) SEM image of an FWM lens metasurface composed of rectangular
nanoholes, imitating the phase front of a lens. (d) Intensity profile of FWM light
emitted from the structure depicted in (c), showing the focusing of the light.
(a), (b) Reprinted by permission from Macmillan Publishers Ltd.: Segal et al., Nat.
Photonics 9, 180–184 (2015) [48]. Copyright 2015. (c), (d) Reproduced from [51]
under the terms of theCreative Commons Attribution 4.0 International License.
With copyright permission.
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Watermarking using a chiral nonlinear metasurface has been demonstrated by paving
the surface with shapes made of chiral nonlinear meta-atoms [147,184]. Under exci-
tation with circularly polarized light, the radiated image takes the form of the im-
printed shape, whereas excitation with the opposite polarization results in the
complementary image, as shown in Fig. 12(a). A more elaborate scheme also allows
for continuous amplitude control by defining each pixel as a combination of two meta-
atoms with a geometrical phase difference due to a relative rotation angle, thus re-
sulting in local interference that modifies the SH amplitude, as depicted in Fig. 12(b)
[174]. This method allows to control the SH amplitude continuously, and encode
SH images on the metasurface, as shown in Fig. 12(c). While a desired nonlinear

Figure 12

Nonlinear image encoding. (a) Nonlinear watermarking in an arbitrary shape using
chiral metamolecules as pixels. Under excitation with right circularly polarized
light, the desired arbitrary image is visible in the SH emission, whereas under exci-
tation with left circularly polarized light, its complementary image is shown.
(b) Nonlinear metamolecules consisted of two identical threefold rotational symmetry
nonlinear meta-atoms. The relative rotation angle between the meta-atoms defines a
different GP at the SH, and due to interference between the emitted waves, an effective
SHG amplitude. (c) Illustration of a nonlinear metasurface encoded with metamole-
cules as described in (b) to give an arbitrary image on the metasurface with SH light.
(a) Reprinted with permission from Kolkowski et al., ACS Photonics 2, 899–906
(2015) [147]. Copyright 2015 American Chemical Society. (b), (c) Reprinted with
permission from Walter et al., Nano Lett. 17, 3171–3175 (2017) [174]. Copyright
2017 American Chemical Society.
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light image is constructed as a result of the manipulation of the metamolecules along
the metasurface, the linear images, i.e., the reflected and transmitted light, both in the
FF and the SH frequency are not affected by this modulation [174].

6.3. Nonlinear CGH Metasurfaces for Far-Field Beam Shaping
CGH methods can also be applied for nonlinear beam shaping in general [30] and for
nonlinear metasurfaces specifically. Generally, CGH nonlinear light shaping tech-
niques rely on the ability to locally control the nonlinear phase and amplitude values
in a continuous range. However, binary control of the nonlinear susceptibility can also
be used for designing the wavefront of nonlinear diffracted light. In these cases, the
binary computer-generated hologram technique, first presented by Lee [19], can be
implemented. Through this method, the desired wavefront is encoded over a spatial
carrier frequency. For example, in the quadratic case, to achieve a phase front φ�x; y�
and an amplitude front A�x; y�, the binary nonlinear susceptibility function is as
follows [30]:

χ�2��x; y� � χ�2�sign
�
cos

�
2πx

Λ
− φ�x; y�

�
− cos�πq�x; y��

�
; (26)

where A�x; y� � sin�πq�x; y�� and Λ is the period of the spatial carrier frequency. The
spatial carrier frequency enables the separation of the beam into different diffraction
orders by virtue of the different Fourier components of the square-wave function given
by the binary modulation. Each diffraction order carries a phase front mφ�x; y�, where
m is the diffraction order index, as has been demonstrated for the shaping of the SHG
emission from SRR-based nonlinear metasurfaces [50], in which nonlinear suscep-
tibility modulation has been applied by inverting the SRR orientation to follow a
general nonlinear tensor mapping of

Figure 13

Nonlinear binary CGH beam shaping. (a) Binary quadratic susceptibility map for the
generation of an Airy beam hologram following Eq. (27). (b), (c) SEM image of a
nonlinear metasurface for the generation of an Airy beam as in (a), consisting of
SRRs. (d) Simulated and (e) measured SH Airy beams generated by the metasurface
presented in (b), (c). Reprinted with permission from Keren-Zur et al., ACS Photonics
3, 117–123 (2016) [50]. Copyright 2016 American Chemical Society.
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χ�2��r� � χ�2�SRRsign

�
cos

�
2πx

Λ
− φ�r�

��
: (27)

In that work, two examples have been presented: a vortex beam with an orbital angular
momentum of ℏl and a phase front of φ�r;ϕ� � lϕ, produced by a grating structure
with a fork singularity, and an Airy beam with a phase front of φ�x; y� � f cy

3, also
depicted in Figs. 13(a)–13(c). The metasurfaces have been demonstrated to generate
the desired beam shapes at the diffraction orders with a close match to simulations, as
seen in Figs. 13(d) and 13(e). The beams were diffracted at angles consistent with the
Raman–Nath condition [Eq. (25)]. Importantly, opposite diffraction orders carried
beam profiles with opposite phases; therefore, the orbital angular momenta of the
diffracted vortex beams were opposite, and the acceleration directions of the Airy
beams were opposite as well. This method can be used to shape nonlinear emission
in the far field to any type of beam shape or arbitrary image.

6.4. Perfect Nonlinear Beam Shaping
The direct nonlinear generation of pure eigenmodes of the paraxial Helmholtz equa-
tion can also be achieved with nonlinear metasurfaces. Doing so requires continuous
control of the spatial distribution of the nonlinear phase and amplitude generated on
the metasurface. This type of nonlinear beam shaping method is unique to metasur-
faces, because the absolute value of the nonlinear susceptibility of a conventional
nonlinear material is fixed.

This concept has been demonstrated in metasurfaces designed for the direct nonlinear
generation of the first-order Hermite–Gauss mode from a nonlinear metasurface

Figure 14

Perfect nonlinear beam shaping. (a) Slow variation of the geometrical structure of the
meta-atoms along the metasurface, consistent with Fig. 8(b), in combination with in-
version of their orientation, results in a linearly varying quadratic susceptibility. (b) SH
Hermite–Gauss beam as imaged from the metasurface illustrated in (a) when excited
with a Gaussian FF beam, and (c) the far-field image of the propagated beam, which
maintains the same form. Reprinted with permission from Keren-Zur et al., ACS
Photonics 3, 117–123 (2016) [50]. Copyright 2016 American Chemical Society.
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consisting of SRRs. The metasurface has been designed to have a susceptibility tensor

amplitude that linearly varied from−χ�2�max to χ
�2�
max, i.e., χ�2��x; y� � χ�2�max

2x
a for a surface

width of a such that x ∈ �− a
2
; a
2
�. The change in the amplitude of the susceptibility

has been achieved through geometrical tuning of the dimensions of each of the
SRRs along the x axis, and the sign change has been achieved by flipping the
SRRs [Fig. 14(a)]. After the excitation of the nonlinear metasurface with a
Gaussian beam of radius w at the surface, the following nonlinear polarization profile
is generated:

P�2��x; y� � 2ϵ0χ
�2�
max

a
E2
i xe

−x2�y2

w2 ; (28)

which generated an exact nonlinear free-space Hermite–Gauss (0, 1) EMmode, as can
be seen in both the optical near-field image and the optical far-field image shown in
Figs. 14(b) and 14(c), respectively. This method can be extended to the generation of
other beam types, such as higher-order Hermite–Gauss modes, simply by constructing
the spatial dependence of the nonlinear tensor to follow a two-dimensional Hermite
polynomial. Additionally, in a similar manner to linear vortex beam shaping, a non-
linear metasurface can be designed with a geometrical phase that exhibits a linear
dependency on the angle relative to the center of the metasurface to generate an
eigenmode of a vortex beam with the following wavefront:

P�2��r;ϕ� � ϵ0χ
�2�E2

i e
−x2�y2

w2
�ilϕ: (29)

6.5. Arbitrary Shaped Nonlinear Holograms
The concept of nonlinear holography can be extended to the general case of arbitrary
shapes, as has been demonstrated with metasurfaces consisting of V-shaped gold
nanoantennas for THG [52]. Each antenna was designed to emit at a certain phase
and a constant intensity through the specific design of the length of the V-shaped arms
and their relative angle. Polarization dependence was also considered and was con-
trolled by tuning the angle of the nanoantenna relative to the metasurface axis.
Mapping the metasurface with these antennas in accordance with a specific CGH
has enabled the THG of arbitrary shapes in the far field. Moreover, by virtue of
the polarization dependence and a careful analysis of the response of the nanoantennas
to an unwanted polarization, a dual-polarization nonlinear hologram has been pre-
sented [also shown in Figs. 15(a) and 15(b)], showing two different holograms for
two orthogonal polarizations. A multilayered metasurface of this type has similarly
been used to generate three different nonlinear holograms, each generated by a differ-
ent polarization (0°, 45°, 90°) and designed for a different focal distance, as presented
in Fig. 15(c). These results demonstrate the possibility of creating polarization-
controlled three-dimensional nonlinear holograms by extending the metasurface con-
cept to multilayered designs.

Another approach for generating several holograms from a single nonlinear metasur-
face has been demonstrated by Ye et al. [54]. In that study, two different SHG holo-
grams and a linear hologram were encoded on the basis of a geometrical phase.
A metasurface consisting of SRRs was excited by circularly polarized light, and each
of the nonlinear holograms was carried by a different circular polarization. The
metasurface was also designed to interact with a linear beam to generate a different
hologram at the fundamental frequency [54]. This concept is illustrated in
Figs. 15(d)–15(e). Such a versatile design is possible because of the existence of
multiple degrees of freedom. First, in most holographic imaging, only the intensity
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profile of the image is desired, whereas the phase is of less importance. Second, an FF
beam does not differ between a certain SRR and its inverted form, whereas the SH
output carries a relative phase of π. Thus, local linear geometrical phase control is
possible over a range of 2ϕ for the FF beam (where ϕ is the SRR angle). Third,
the nonlinear phase generated by a circular polarization of type σ can be separated
into a SHG component of circular polarization σ with a phase of 3ϕ and an additional
SHG component of polarization −σ that carries a phase of 3ϕ, as described in
Eq. (16). As a result, the phase of the �σ SHG component has a one-to-one relation-
ship with the SRR angle ϕ, whereas for the −σ SHG component, the three orientation
angles of ϕ and ϕ	 2π

3
yield the same nonlinear phase of 3ϕ. Incorporating these

Figure 15
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emission phases for each separate beam into a CGH algorithm enables the construc-
tion of a wavelength-spin multiplexing holographic metasurface of this kind.

7. CONCLUSION AND OUTLOOK

The emerging field of nonlinear metasurfaces has been attracting a lot of attention in
the recent years thanks to the vast range of possibilities it holds within and the many
challenges that yet remain unsolved. For more information we advise the readers
to turn to additional comprehensive reviews in the topic of nonlinear metasurfaces
[46,47,57,188,189]. In this paper, we reviewed the recent progress in the linear
and nonlinear generation and shaping of light by using metasurfaces. We specifically
presented various mechanisms that enable control over the local linear and nonlinear
interactions on such metasurfaces. We discussed the additional possibilities in the
nonlinear case compared with the linear case, which stem from photon–photon inter-
actions, and showed how to use them for the nonlinear shaping of light. Such non-
linear shaping of light can be useful for imaging and data communication, among
other applications. The integration of these capabilities into engineered nanometer-
scale layers and the fabrication of such structures over large surface areas by using
standard techniques make these concepts interesting for the development of integrated
nonlinear devices. We also described the advantages of using metasurfaces rather than
conventional nonlinear materials for the control of single subwavelength pixels.
Because each pixel can be engineered separately to emit with a certain amplitude,
phase, radiation pattern, and polarization and with a specific spectral response, the
toolbox for nonlinear light shaping by using metasurfaces is significantly broader than
the shaping abilities afforded by conventional materials. The low conversion efficien-
cies achieved to date with metasurfaces remain a challenge for most practical appli-
cations; however, their high functionality can be already applied for various sensing
applications. In addition, several works have demonstrated how to considerably im-
prove the conversion efficiency by using, for example, metasurfaces integrated on
quantum wells or multilayered devices. The concepts described here for the shaping
of light by using nonlinear plasmonic metasurfaces can also be extended to nonlinear
dielectric metasurfaces. In that case, the nonlinear interaction can be dominated by
scattering with negligible absorption. Together with the evolution of 3D nanoscale
fabrication techniques and developments in the field of active metamaterials, this

Nonlinear holography of arbitrary shapes. (a) Two THG holograms generated from
the same double-layered metasurface. Each hologram corresponds to a different
orthogonal polarization of the FF excitation light. (b) SEM image of the metasurface
used to generate the holograms shown in (a). The front layer consists of V-shaped
antennas, each with a different opening angle and size, which are used to control
the phase while maintaining a constant amplitude of the cubic susceptibility. The back
layer is also visible, with a different set of V-shaped antennas, rotated by 90° and thus
corresponding to the orthogonal polarization. (c) Three THG holograms generated by
a three-layered nonlinear metasurface. Each hologram interacts with a different FF
polarization (0°, 45°, 90°) and is focused on a different holographic plane.
(d) Illustration of a linear hologram generated by a nonlinear metasurface and
(e) two different nonlinear holograms with opposite circular polarizations. All three
are generated by the same nonlinear metasurface. (a)–(c) Reproduced from [52] under
the terms of the Creative Commons Attribution 4.0 International License. (d),
(e) Reproduced from [54] under the terms of the Creative Commons Attribution
4.0 International License.
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direction of study may lead to the realization of large-scale, actively tunable, nonlinear
metamaterials that can be designed for specific applications.
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