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Collective optical interactions in infinite nanoparticle arrays have been studied intensively over the past

decade. However, analysis of finite arrays has received significantly less attention. Here, we theoretically

and numerically show that the collective interaction in finite nanoparticle chains can support phase gradi-

ents that shift the diffraction pattern with respect to infinite chains. Specifically, we demonstrate that this

phenomenon occurs for resonating nanoparticles in a narrow spectral range around the Rayleigh

anomaly condition, i.e., when a certain diffraction order radiates at a grazing angle. This reveals that the

Rayleigh anomaly, which is associated with intensity changes, can also induce angular anomalies in finite

arrays. To study the effect theoretically, we develop a novel analytical approach based on the discrete

dipole approximation. Within this framework, we find an approximate closed-form solution to the par-

ticles’ dipole moments. We show that our solution can be expressed in two different ways, one based on

a combinatorial calculation, and the other on a recursive calculation, and discuss the unique physical

interpretation emerging from each of them. Our results are of potential importance in a wide range of

practical applications from LIDARs to beam shaping schemes.

I. Introduction

The interaction between light and nanostructured periodic
systems has been at the focus of extensive research over the
past two decades. A central topic of ongoing interest in the
field deals with the collective response of periodic systems and
its influence on the interaction with light.1–3 It was shown that
collectivity of the system may significantly enhance light–
matter interaction and support a plethora of attractive and
highly tailorable physical phenomena.1–3 For example, it can

be beneficial for nonlinearity enhancement and
manipulations,4–8 induced transparency and slow light
windows,9–11 sensing,12–15 lasing16–19 and even for stimulating
Bose–Einstein condensation at room temperature.20

The theoretical analysis of periodic nanostructured systems
usually requires the use of approximations that hide the full
dynamics. In the simplistic case of an infinite array illumi-
nated by a plane wave, all the nanoparticles are imposed with
equal dipole moment amplitudes, and phase profiles dictated
by the angle of incident light, according to Bloch’s theorem.
However, for finite arrays, the solution is not restricted and the
interaction between the nanoparticles can induce a spatial dis-
tribution of the dipole moment values over the array. The
variety of phenomena emerging from this spatial distribution
have been explored extensively in the microwave regime,21,22

and more recently received some attention also in the optical
regime.18,23–31 These dipole moment variations across the
array may influence the radiation to the far-field, for example,
by causing a change in the diffracted beam width and shape
or stimulating the radiation of leaky waves. Notably, in these
examples, the directions of reflection and diffraction of the
array still follow the grating equation for infinite arrays. The
modified far-field radiation may reveal intriguing physical pro-
perties of the studied devices. For example, lately, it has been
shown that via far-field analysis of leaky-waves radiation, the
topological properties and invariants of periodic arrays can be
probed.32,33 In the context of collective modes supported by
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the array, i.e., in vicinity to the Rayleigh anomaly (RA) con-
dition, several works have also studied the evolution of the
spectral response and associated quality factor as a function of
the array size.34–39 The dynamics in finite nanoparticle arrays
are often explained by the modal solutions of the infinite
array.25,26,40,41 While this approach is elegant and compact in
the sense that it uses a few global wave functions that encapsu-
late the microscale interactions, the echoing multi-scattering
processes that build up the modes are hidden in such analysis.

Here, we use a microscopic approach to explore the effect of
the multi-scattering process in finite chains on the spatial dis-
tribution of the nanoparticles’ excitation. This approach pro-
vides a new physical picture of the interaction and allows us to
reveal new associated dynamics. Particularly, while the famous
RA condition is associated with intensity anomalies of the
light for over a century, we hereby show how non-trivial phase
anomalies can emerge at that condition. In turn, these lead to
an interesting outcome, an angular diffraction anomaly,
whereby the diffraction directions from finite chains deviate
from the universally known grating equation. In addition, we
show that the chain’s multi-scattering process can be
described by recursive relations dictated by the generalized
form of the Fibonacci series, a ubiquitous feature of nature.
An alternative explicit solution based on the multinomial coeffi-
cient is presented, which reveals the combinatorial nature of the
underlying dynamics. We use the developed model to explore
the buildup of the studied mode and show how the scattering
paths interference becomes interesting and non-trivial as the
comprising particles become resonant. Finally, we link the
newly developed theory of the microscopic picture and the
well-established theory of the macroscopic picture.

The paper is organized as follows: in Section II we first
present the theory of the discrete dipole approximation (DDA)
and then introduce the solution for infinite chains (Section
II-A). Next, we derive the model for finite chains (Section II-B)
and then introduce two different analytical solutions for the
chain excitation (Sections II-C and II-D). In Section III, we
demonstrate the novel phenomenon of RA induced phase gra-
dients and use the developed model to explore its origin. In
Section IV we show how the phase gradients cause angular
reflection and diffraction anomalies. In Section V, we use the
model to analyze the chain dynamics by multiple scattering
path interference. In Section VI we show how the explored
phenomena can also be interpreted according to an existing
theory for the macroscopic dynamics of the chain.
Conclusions and outlook are given in Section VII.

II. Theory

To analyze the spatial profile of the chain’s excitation under
plane wave illumination, we use the DDA.42,43 This model
serves to find the dipole moments’ vector pi of each of the N
nanoparticles composing an array of arbitrary geometry (i = 1,
…, N) by solving a system of 3N coupled equations, which
accounts for the mutual influence of all nanoparticles. To

obtain physical insight, we will consider the simplified case of
a finite 1D chain of N identical, equally spaced nanoparticles.
In addition, for simplicity, we will derive the model within the
scalar approximation, where a specific polarization component
governs the interaction. We denote the polarizability of the
particle located at ri, by αs,i, and express the dipole moments
at the ith location as:

pi ¼ pðr iÞ ¼ αs;iEloc;i ð1Þ
where Eloc,i = Eloc(ri) is the local electric field at ri, and stands
for the field at the particle’s location but in the absence of the
particle itself. This field is composed of the applied field,
denoted as Eapp,i, and the retarded scattered fields from all
other particles Esca,i, at that location:

Eloc;i ¼ Eapp;i þ Esca;i ¼ Eapp;i þ
X
j=i

Gijpj ð2Þ

where Gij (= G(|ri − rj|)) is the electric dipole Green function
that describes the interaction between the ith and jth dipoles:44

Gq ¼ gqeikrq

gq ¼ ð1� ikrqÞð3 cos2ðθqÞ � 1Þ
rq3

þ k2 sin2ðθqÞ
rq

� � ð3Þ

where q = |i − j|, rq = qd is the distance between particles i and j,
d is the inter-particle spacing, k = |k| = 2πn(λ)/λ is the wavenum-
ber of the ambient medium and θq is the angle between the
dipole moment vector (i.e., the polarization of the incident field
in the scalar case) and the displacement vector directed from j
to i. We will consider the case of θq = π/2, i.e., where the polariz-
ation is perpendicular to the chain axis (transverse excitation).
From eqn (1)–(3) a set of N linear equations can be obtained:

Âp ¼ Eapp ð4Þ

where Â is the N × N interaction matrix, p is N × 1 dipole
moment vector of the different particles and Eapp is N × 1
vector of the applied electric field at each particle’s location.
The term Aij of the matrix Â accounts for the interaction of par-
ticles i and j for i ≠ j (according to eqn (3)), and for each par-
ticle’s response to an external excitation for i = j (according to
eqn (1)):

Aij ¼ αs�1 for i ¼ j
�G i�jj j for i = j

�
ð5Þ

The particles’ dipole moments can be obtained from the
inverse matrix B̂ ≡ Â−1:

p ¼ B̂Eapp ð6Þ

Typically, the matrix Â is numerically inverted to obtain B̂
and p. This formalism is exact when the nanoparticles are
sufficiently small to be described as perfect dipoles but have
shown to yield accurate predictions even for larger
nanoparticles.1,45 However, this numerical method acts as a
black box such that important aspects of the physical
dynamics remain clandestine. While approximate iterative solu-
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tions exist,46–52 which may give some insight into the underlying
physics, a closed-form solution for the problem is generally
non-existent. In the following subsections, we first discuss the
existing analytical solution for infinite chains, and then derive
an approximate closed-form solution for finite chains.

A. Infinite chains

For infinite chains illuminated by a plane wave, all the nano-
particles are imposed with equal dipole moment amplitudes,
and phase profile that is dictated by the angle of the incident
light. Therefore, instead of relying on eqn (1) to solve the
chain’s response, where a numerical calculation is required to
find Eloc,i, it is possible to define the effective polarizability of
a nanoparticle within the infinite chain:1

αeff ¼ ðαs�1 � SðkkÞÞ�1; ð7Þ
and from that to calculate the dipole moments according to
the applied field by pi = αeffEapp,i. The chain’s incident-angle-
dependent structural factor is defined as SðkjjÞ ¼

P
q=0

Gq � e�ikjj �rj

and k∥ = k sin(θ) is the parallel component of the incident wave
vector. Furthermore, according to quasi-momentum conserva-
tion considerations, the directions of diffraction from an infi-
nite chain can be obtained by:

kk þ Gm ¼ k t=rk;m ð8Þ
where Gm = 2πm/d is a reciprocal lattice vector, m denotes the
order of diffraction and kt/r∥,m is the parallel component of the
transmitted/reflected wave vector of order m. This equation, also
known as the grating equation, is of general validity to periodic
structures and is not restricted to nanoparticle chains. When a
certain diffraction order radiates at a grazing angle to the
surface, i.e., kt/r∥,m = ±k, the RA condition is satisfied:53

kk þ Gm ¼ +k ð9Þ

B. The derived model for finite chains

To derive an insightful analytical solution for p for finite
chains, we develop a model in which we approximate Â by a
different matrix, ÂModel, which can be analytically inverted. To
that end, we first describe the single reciprocal system by two
non-reciprocal systems, as described in Fig. 1. Explicitly, we
perform an LU decomposition to Â, such that:§

Â ¼ L̂Û ð10Þ
where L̂ and Û are lower and upper triangular matrices,
respectively. Hence, the solution for p can be obtained by suc-
cessively solving the two following systems:

L̂paux ¼ Eapp

Ûp ¼ paux
ð11Þ

where the auxiliary dipole moment vector paux, which is
obtained from the solution to the first set of equations, serves
as the excitation for the second set. These two sets of
equations correspond to two artificial non-reciprocal, one-way
systems, which can be described by particles with asymmetri-
cal scattering patterns. As can be seen in Fig. 1, the original
system (top panel) is equivalent to superimposing the first
system (middle panel), which is characterized by an inter-
action matrix L̂ and has only scattering towards the right side
of the chain (solid black oblongs lines emanating from the
particles), to the second system (bottom panel), which is
described by Û, and has only scattering towards the left side.

The derivation so far was exact. We proceed by taking
advantage of the properties of Â as a symmetrical Toeplitz
matrix, i.e., Aij = Ai+1,j+1 = A|i−j|, and perform a simplifying
approximation that, as we show, yields very accurate results.
The fact that Â is a symmetrical Toeplitz matrix is attributed to
the interaction between the particles, which depends only on
their distances, i.e., G(ri − rj) = G(|ri – rj|). We define a unit-less
parameter that quantifies the strength of the nearest neighbor
interaction, ζ ≡ g1αs, where g1 is defined in eqn (3). Then, for
weakly interacting nearest neighbors, i.e., for sufficiently small

Fig. 1 The model’s main simplification that enables obtaining an
analytical solution. Decomposition of a single reciprocal system
described by the interaction matrix Â, to two artificial non-reciprocal,
one-way systems described by L̂ and Û. The top figure depicts the reci-
procal system according to Â, where the particles scatter symmetrically,
and Eapp is the applied field that serves to find p. The bottom figure
shows the two non-reciprocal systems: first, excitation by Eapp and
asymmetric scattering to the right, according to L̂, serves to find paux.
Then, excitation by paux and asymmetric scattering to the left, according
to Û, is used to find p. The black solid oblong patterns that emanate
from each particle depict its associated radiation pattern. The polariz-
ation of the applied field is perpendicular to the chain axis, as marked in
the illustration.

§We note that this kind of LU decomposition, without permutations, always
exists provided that all the leading submatrices of Â have a non-zero
determinant.64
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|ζ|, L̂ and Û can be expressed by elements of Â (see Section 1 of
the ESI† for an exact derivation of the validity condition).
Specifically, if we decompose Â to its lower and upper triangu-
lar parts as follows:

ALij ¼
Aij for i � j
0 for i , j

�
; AUij ¼ ðALijÞT ð12Þ

Then, we can approximate L̂ and Û to be:

L̂ ! L̂Model ;
ffiffiffiffiffi
αs

p
Â
L

Û ! ÛModel ;
ffiffiffiffiffi
αs

p
Â
U ð13Þ

By solving the original system, according to the two steps
shown in Fig. 1 and with the model matrices L̂Model and
ÛModel, the solution for the particles’ dipole moments can be
found. Going through the described procedure is equivalent to
solving the original system in eqn (4) with the model matrix
ÂModel instead of Â:

Â ¼ L̂Û ! ÂModel ; αsÂ
L
Â
U ð14Þ

The validation of the derived model by direct comparison
of the exact numerical solution and the approximated analyti-
cal solution according to the model assumption in eqn (13) is
presented in Section 2 of the ESI.†

In the following subsections, II-C and II-D, we present two
different analytical solutions to the governing equation, eqn
(6), according to the model in eqn (14), and discuss their
unique physical interpretation. Namely, it is shown that while
the two solutions are equivalent and describe the chain
dynamics in terms of the same multi-scattering processes, the
way in which these processes are counted differs in the two
solutions and offers a different perspective for understanding
the underlying interactions.

C. Solution based on a recursive interpretation

According to the above derivation, to solve for p we need to
solve two systems with triangular Toeplitz matrices, each has
an analytical solution for the required matrix inversion.38,54

The inverse of Â
L
=Â

U
is also a finite lower/upper triangular

Toeplitz matrix:54

BL
ij ; ðALijÞ�1 ¼ B i�jj j for i � j

0 for i , j

�

BU
ij ¼ ðBL

ijÞT
ð15Þ

where Bq = B|i − j| (q = |i − j|) can be found based on the gener-
alized Fibonacci polynomials:54

Bq ¼ αsFðN�1Þ
q ð~WÞ; ð16Þ

And ~W ¼ ðW1;W2; . . . ;WN�1Þ ¼ αsðG1;G2; . . . ;GN�1Þ is a
weight vector that determines the contribution of each
element in the recursive formula for FðN�1Þ

q ð~WÞ :

FðN�1Þ
q ð~WÞ ¼

PN�1

i¼1
WiF

ðN�1Þ
q�i ð~WÞ; q > 0

1; q ¼ 0
0; q , 0

8>><
>>:

ð17Þ

where FðN�1Þ
q ð~WÞ are the generalized Fibonacci polynomials.

This recursive solution represents all possible multi-scattering
paths between any two particles in the chain separated by
exactly q unit cells, which may be regarded as the source and
target of the scattering path. Specifically, Bq represents the
effective response of the target particle to the applied field,
such that the trivial response captured by αs is modified to
include all scattering paths in the chain originating from the
source. Moreover, each of the Bq terms depends on all the pre-
vious Bi, i.e. i < q, such that only unidirectional scattering
paths between the source and the target are considered.

To understand the multi-scattering perspective for the solu-
tion we first explain this interpretation for q = 0 and q = 1, and
then consider higher q values for the general case. Afterwards,
we implement this perspective on a specific case of four par-
ticles. For q = 0, eqn (16) and (17) give B0 = αs, which describes
only the trivial response of the particle to the applied field. For
q = 1, B1 = αs(αsG1) and describes the effective response of a
target particle to the applied field in the presence of only one
particle at a distance d, which acts as the source. This case for
q = 1 is unique in the sense that only the source and target
exist, such that in addition to the trivial response of the target
to the applied field αs, only the direct scattering from the
source to the target (αsG1) is also included. For q ≥ 2, Bq
describes the effective response of the target particle in the
presence of q preceding particles in the chain. The recursive
relation includes the sum of q nonzero terms. Each term i (i <
q) refers to an intermediate particle in the chain that precedes
the target by exactly i unit cells. The intermediate particle
defines a sub-chain of the total chain, which starts with the
source particle and ends with the intermediate particle. First,
the intermediate particle acts as a temporary target for the
sub-chain such that the corresponding Fibonacci polynomial
F(N−1)q−i recursively includes all multi-scattering paths from
the source to the intermediate particle. Next, the intermediate
particle reemits light to the target of the chain as a direct scat-
tering over i unit cells, disregarding all particles between the
intermediate and target particles, represented by the corres-
ponding weight term Wi = αsGi. The sum over i defines the
total recursive relation by alternatively assigning all q particles
preceding the target as the intermediate particle. For the term
i = q, the intermediate particle is the source such that only the
direct scattering path over q unit cells is included.

To better understand the recursive interpretation, it is
instructive to examine an example of a four-particle chain, as
depicted in Fig. 2. According to eqn (16) and (17) we can find:

B3 ¼ B0 � αsG3 þ B1 � αsG2 þ B2 � αsG1 ð18Þ
This describes the scattering, depicted in Fig. 2 (parenth-

eses on the left), from particle 1 to particle 4 as follows: the
first term defines particle 1 to be the intermediate particle and
describes only the direct scattering from the first (B0) to the
fourth particle (αsG3). The second term defines particle 2 to be
the intermediate particle and describes all the scattering paths
from the first to the second particle (B1) followed by the direct
path from the second to the fourth particle (αsG2). The third
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term defines particle 3 to be the intermediate particle and
describes all the scattering paths from the first to the third
particle (B2) followed by the direct path from the third to the
fourth particle (αsG1).

To simplify the expression for Bq, we divide it to a complex
amplitude term, bq, and a phase term:

Bq ¼ bqe ikrq ð19Þ

The term eikrq describes the phase accumulation of a wave
propagating a distance of rq = qd. By aiming to find bq we can
neglect the phase resulting from free-space propagation, which
is especially beneficial around the RA condition. By substitut-
ing the relation Gq = gqe

ikrq from eqn (3) into eqn (16), we note
that the phase in each term of the recursive sum for Bq is e

ikrq.
Therefore, we find bq to be:

bq ¼ αsFðN�1Þ
q ð~wÞ ð20Þ

where ~w ¼ αsðg1; g2; . . . ; gN�1Þ. We note that the calculations of
Bq and bq are much more efficient using the recursive relation
in eqn (16)–(20), compared with the combinatorial solution
presented in the next subsection, due to the ability to perform
memoization. Explicitly, the calculation can be optimized by
storing the results of previously calculated Bq and bq and avoid-
ing re-computation.

D. Solution based on a combinatorial interpretation

While the solution based on the generalized Fibonacci poly-
nomials uncovers the recursive relations that are fundamental
to the chain excitation, there is an additional important solu-
tion. This solution serves to explicitly count all multi-scattering
paths between the source and target particles using a combina-
torial interpretation and reveals essential properties of the
multi-scattering processes that underly the particle inter-
actions. The additional solution for Bq has the following
form:38

Bq ¼ αs
X

~t[T½q�
Mð~tÞ

Yq
i¼1

ðαsGiÞti ð21Þ

where~t is a positive integer vector of length q with elements
t1,…,tq, and T½q� is a set of all vectors~t that satisfy

P
i
iti ¼ q,

thereby specifying the summation condition. In addition, the
multinomial coefficient is defined as:

Mð~tÞ ; t1 þ . . .þ tq
t1; . . . ; tq

� �
¼ ðt1 þ . . .þ tqÞ!

t1!t2! . . . tq!
ð22Þ

In the following, we discuss the physical meaning of each
of eqn (21) terms and show how it serves to count the multiple
scattering paths in the chain. Specifically, we explain the physi-
cal meaning of the vector~t and by looking at an example of a
four-particle chain we show the source of the multinomial
factor Mð~tÞ in the equation.

Every vector ~t that obeys the summation condition rep-
resents a separate term of Bq, in which each component ti (1 ≤
i ≤ q) of the vector appears as the exponent of αsGi. This may
be understood as the occurrence of ti absorption-reemission
processes of any two dipoles separated by i unit cells while
maintaining the rule of a unidirectional scattering.
Consequently, the total number of absorption-reemission pro-
cesses in the term associated with each ~t is T ;

P
i
ti, repre-

senting a multi-scattering path between two dipoles in the
chain, i.e., the source and the target of the scattering path. For
a general nonzero and not-restricted vector ~t, this scattering
path may include any number of absorption-reemission pro-
cesses from one up to infinity and can describe a multi-scatter-
ing path between any two source and target dipoles in the
chain. However, the components ti of every vector~t in the sum
are limited by the summation condition, therefore defining
which multi-scattering paths are permitted in addition to the
distance between the source and the target of the scattering
paths. Namely, each term (αsGi)

ti in eqn (21) describes ti
absorption-reemission process over a total distance of iti unit

Fig. 2 Interpretation of the model’s analytical solution in terms of mul-
tiple scattering process. The illustration depicts all scattering paths from
particle 1 to particle 4, corresponding to B3, while scattering only
towards the right direction of the chain. The paths are counted accord-
ing to the recursive interpretation on the left and according to the com-
binatorial interpretation on the right. The color of the arrows and the
black dashed vertical lines correspond to the recursive interpretation.
Left: The calculation relies on the division of the scattering from the first
to the last particle into two segments. Explicitly, the first segment
(orange) relies on the previously calculated Bq terms and corresponds to
scattering over q particles, and the second segment (blue), which
corresponds to αsGN−1−q, accounts for the direct scattering over the
remaining particles. For example, the top bracket depicts only the direct
scattering from the first (B0) to the fourth particle (αsG3). The next
bracket shows the scattering from the first to the second particle (B1)
and then the resulting path from the second to the fourth particle
(αsG2). The last bracket accounts for the two contributions of scattering
from the first to the third particle (included in B2) and then the resulting
path from the third to the fourth particle (αsG3). Right: The coefficients
ti’s count how many hops of i particles exist in the path, and the multi-
nomial coefficients, M’s, count the degeneracy of the paths.
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cells. The summation condition
P
i
iti ¼ q therefore determines

that only scattering paths over exactly q unit cells are included.
Thus, Bq consists of all unidirectional multi-scattering paths
between any two particles in the chain acting as a source and a
target, where the two particles are separated by a distance qd.

To demonstrate the multi-scattering paths described by Bq
in eqn (21) it is sufficient to look at a few small values of q.
First, we see that B0 = αs, which accounts for the particles’
response to the applied field, and B1 = αs(αsG1) describes the
single direct scattering path that exists between nearest neigh-
bors in the chain. For q ≥ 2, the source and target of each
multi-scattering path enclose at least one particle between
them, such that on top of the direct scattering path over a dis-
tance of qd, all multi-scattering paths that include some or all
the enclosed particles are added. For example, looking at the
case of a four-particle chain, as shown in Fig. 2 (right parenth-
eses), we see that there are four possible paths of scattering
from particle 1 to particle 4. The first (top) path is the direct
scattering path 1 → 4 over three unit cells, the second 1 → 2 →
4 and third 1 → 3 → 4 include only one of the particles 2 and
3, and describe scattering over one unit cell followed by scat-
tering over two unit cells or vice versa, and the fourth path 1 →
2 → 3 → 4 includes all the particles between the source and
the target and describes three consecutive scatterings over a
distance of a unit cell each. The associated sum in B3 has three
terms corresponding to: first t1 = 0, t2 = 0, t3 = 1, second t1 = 1,
t2 = 1, t3 = 0 and third t1 = 3, t2 = 0, t3 = 0. The degeneracy of
the two scattering paths 1 → 2 → 4 and 1 → 3 → 4, which both
are described by t1 = 1, t2 = 1, t3 = 0, is accounted for by the
associated multinomial coefficient, M = 2, explaining its role
in eqn (21). Generally, paths which are composed of similar
scattering segments but ordered differently, correspond to a
single term in the sum, with weight according to the associ-
ated multinomial coefficient. The number of scattering paths
increases rapidly as a function of the number of particles (see
Section 3 of the ESI†).

As we did in the recursive case, we can define combinatori-
cally the bq from eqn (21) by:

bq ¼ αs
X

~t[T½q�
Mð~tÞ

Yq
i¼1

ðαsgiÞti ð23Þ

Eqn (21) and (23) are equivalent to eqn (16) and (20),
respectively. Specifically, the recursive sum in eqn (16) and
(20) is replaced by an equivalent sum over the different scatter-
ing paths in eqn (21) and (23). Importantly, according to eqn
(6), the solution for each pq is determined by the elements of
the matrix B̂. Therefore, the underlying physical dynamics are
embedded in the derived bq terms.

To examine the appearance of nontrivial phase gradients over
the chain and better understand the meaning of the Bq terms, it
is insightful to examine the difference in the dipole moment of
two adjacent particles in the chain. By considering first the solu-
tion of the unidirectional system described by L̂, and for the case
of normal incidence, i.e., Eapp,q = E0 ( = 1 V nm−1), we get:

Δpaux;q ; paux;qþ1 � paux;q ¼ BqE*
app;q ð24Þ

where E*
app;q denotes the complex conjugate of Eapp,q. We see

that Bq determines the difference in dipole moments of par-
ticles q + 1 and q. This result is expected since particle q experi-
ences scattering from q − 1 particles from its left (particles 1
to q − 1), the same as particle q + 1 experiences scattering
from q − 1 particles from its left (particles 2 to q). In addition,
particle q + 1 experiences scattering from particle 1, described
by Bq. We can generalize the relation in eqn (24) for the case of
oblique incidence, Eapp,q = E0e

−ik∥rq, by looking at the angle-
normalized dipole-moment difference:

Δp̃aux;q ; p̃aux;qþ1 � p̃aux;q ¼ BqE*
app;q ð25Þ

where:

p̃aux;q ;
paux;q
eiϕq

ð26Þ

and ϕq = arg(Eapp,q). By looking at p̃q and Δp̃q we eliminate the
spatial phase profile in the chain attributed to the applied field
and examine only the phase that arises due to the interaction
between the nanoparticles. The second unidirectional system,
described by Û, is solved in the same manner but for scattering
in the opposite direction of the chain, according to Fig. 1. Thus,
the equivalents of eqn (25) and (26) for that system are:

Δp̃q ; p̃qþ1 � p̃q ¼ �BN�qp*aux;q ð27Þ

p̃q ;
pq
eiϕq

ð28Þ

These quantities, i.e., the angle-normalized dipole moment
p̃q and its difference Δp̃q, play an important role in the descrip-
tion of the excitation evolution along the chain. Specifically, in
the vicinity of a RA condition, it is convenient to describe the
difference in dipole moment from eqn (25) and (27), by the
complex amplitude bq. In particular, the insightful relations
Δp̃aux;q � bq or Δp̃q � �bN�q hold near a RA towards the right
side (positive order RA) or towards the left side (negative order
RA) of the chain, respectively.

III. RA induced phase gradients

We apply the derived model to explore the emergence of phase
gradients, defined with respect to the phase of the applied
plane wave, that arise in finite chains at the vicinity of the RA
condition for oblique incidence illumination. In what follows
we show that at the RA condition the in-plane diffraction,
which initiates at the chain edge, requires a finite length to
build up. Therefore, before reaching this length, each particle
contributes considerably to the formation of the diffraction,
and consequently, the anomalous phase gradients are formed.
We keep the discussion general by referring to the fundamen-
tal property that determines the optical response, i.e., the
polarizability, but we note that the values we analyze can be
realized both with metallic and dielectric nanoparticles.55 We
examine the extreme cases of very small and very large
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(maximal) polarizability, i.e., off- and on-resonance, respect-
ively, and the cases of on- and off-RA condition. For the on-
resonance case, we consider the maximal magnitude of the
polarizability at wavelength λ for a single mode, i.e., the dipole
mode in our case, which can be extracted from energy conser-
vations considerations55

αMax
s

�� �� ¼ 3
2k3

ð29Þ

This value is governed by the radiative loss and corresponds
to the limit of negligible dissipative loss. We proceed by ana-
lyzing this limit, but note that even for varying dissipative
rates up to the critical value where it equals the radiative loss
rate, the reported effects of anomalous phase gradients and
angular deviations persist (see Section IV for further discus-
sion). Importantly, we note that even metals, in frequency
ranges where they operate as good conductors, can possess
negligible dissipative losses. For example, a gold nanorod of
dimensions 190 nm × 100 nm × 100 nm supports the value of
polarizability specified in eqn (29) for λ = 1000 nm (Section 4
of the ESI†). Based on this value of the polarizability at the
resonance frequency, we examine the spectral response of a
chain of identical nanoparticles with the following parameters:
single nanoparticle polarizability with a Lorentzian43,56,57 form
of αs = A0(ω0

2 − ω2 + iγω), amplitude A0 = 1 × 1015 cm3 s−2, reso-
nance angular frequency ω0 = 2πc/λ0, resonance free-space
wavelength λ0 = 1000 nm, angular frequency ω = 2πc/λ, where c
is the speed of light, and damping constant γ = 300 Thz. A plot
of the modeled polarizability is presented in Section 5 of the
ESI.† In Fig. 3(a) we present the extinction cross section of a
particle within an infinite chain, calculated according to:58

σext ¼ 4πk � =ðαeffÞ ð30Þ
where = denotes the imaginary part, and αeff is the effective
polarizability defined in eqn (7). Fig. 3(a) shows σext vs. wave-
length and incident angle, for an infinite chain with the same
parameters of the finite chain studied within the paper:
ambient medium refractive index of n = 1.5, and an inter-par-
ticle spacing of d = 420 nm. The dashed white line corresponds
to the m = −1 RA, plotted according to the momentum conser-
vation condition in eqn (9).

The chain will be explored at the marked points in the
figure: case A – off-resonance and off-RA (λ = 1440 nm, θ =
35.5°) and case B – on-resonance and on-RA (λ = 1000 nm, θ =
35.5°). In addition, in the ESI† we also numerically verify the
model accuracy by examining case C – off-resonance and off-
RA (λ = 1440 nm, θ = 0°) and case D – on-resonance and off-RA
(λ = 1000 nm, θ = 0°).

To examine the emergence of anomalous phase gradients
we now look at a finite chain with the same parameters of the
infinite chain, at the vicinity of a unidirectional RA such that
the inversion symmetry of the chain is broken. Specifically, we
compare the chain dynamics of a 50-particle chain for a
specific angle of incidence θ = 35.5°, for cases A and B of
Fig. 3(a). For that angle of incidence, we can find the wave-
length of the m = −1 RA (coherent buildup from right to left)

to be λ = 996 nm, using eqn (9). In Fig. 3(b) we examine the
phase of the normalized dipole moment p̃ðnormÞ

q ¼ p̃q= psj j of
the chain’s nanoparticles, for the two described cases. In the
top part of Fig. 3(b), we show the case of off-resonance exci-
tation and far from a RA (case A). We can see the minute oscil-
lations of the phase, which spans less than 0.03π rad, and
shows no monotonic trend. On the contrary, in the bottom
part of Fig. 3(b), we excite the chain at the localized resonance
of the nanoparticles and in vicinity to a RA (case B). We can
see the nearly monotonic phase trend that spans ∼0.5π rad.
The phase gradually increases from the last to the first par-
ticle, according to the direction of the coherent scattering
buildup for the m = −1 RA.

To better examine the chain excitation, in Fig. 3(c) we plot
the trajectory of p̃ðnormÞ

q of the nanoparticles in the chain, on
the complex plane. The orange arrows point to p̃ðnormÞ

1 , and the
blue arrows to p̃ðnormÞ

N . In the middle, the yellow arrows with
the light blue guiding lines show the consecutive differences

Fig. 3 RA induced phase gradients. (a) Optical extinction of an infinite
chain with d = 420 nm and n = 1.5. These chain parameters are equi-
valent to the parameters of the finite chain studied within this paper.
The dashed white line corresponds to the 〈−1〉 RA. (b) The phase of
p̃ðnormÞ as a function of the particle number for cases A and B in (a). The
exact and model solution according to eqn (14), are presented. For case
B, the nearly monotonic phase trend that spans ∼0.5π rad can be seen.
(c) The trajectory of p̃

ðnormÞ
q of all the particles in the chain, on the

complex plane, for cases A (dashed lines) and B (solid lines). The orange
arrows point to p̃

ðnormÞ
1 , and the blue arrows to p̃

ðnormÞ
N . In the middle

between these two, the yellow arrows, with the light blue guiding lines,
show the difference in p̃N

q . The arrows of every tenth particle are marked
in black (N = 10,20,30,40). We note that the arrows for case B point to
the direction of particles 1 to 50, while the coherent interaction, accord-
ing to the m = −1 RA, is in the direction of particles 50 to 1. In addition,
the blue and orange points show the excitation of the single particle,
and the excitation of a particle within an infinite chain, respectively.
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in p̃ðnormÞ
q , such that the evolution of p̃ðnormÞ

q of the entire chain
can be tracked. In addition, the blue points in the figure
correspond to the excitation of the single nanoparticle:

pðnormÞ
s ;

αs
αsj j ¼ eiϕαs ð31Þ

where ϕαs = arg(αs). This is equivalent to the excitation of a
nanoparticle within a hypothetical chain with no interactions.
The orange points in the figure correspond to the excitation of
a nanoparticle within an infinite chain with the same
parameters:59

pðnormÞ
1 ¼ αeff

αsj j ð32Þ

where αeff is defined in eqn (7). In addition, to easily track the
evolution of the chain as a function of the number of particles,
we mark every 10 particles with a black arrow (particles
10,20,30,40 are marked).

We can see in Fig. 3(c) that the entire range of evolution on
the complex plane for case A is confined to a substantially
smaller region. Moreover, for case A, the orange and blue
points are very close, such that no substantial change of the
single particle response occurs due to the interaction. On the
other hand, the same two points for case B are considerably
separated. Intriguingly, in that case, we can see that the end of
the chain responds like the single-particle case, while the
beginning of the chain responds like an infinite chain. This
behavior is attributed to the coherent buildup of the m = −1
RA. The last particle of the chain experiences only the incoher-
ent scattering from the rest of the chain, which sums up to a
minor change in its local field and, therefore in its excitation,
relative to the single-particle case. Explicitly, the incoherent
scattering translates to paux,N ≈ Eapp,N, which in turn translates
to pN ≈ αsEapp,N. Proceeding from that particle towards the
beginning of the chain, each particle experiences a superposi-
tion of incoherent scattering from its left, and coherent scat-
tering from its right. While the strength of the incoherent scat-
tering does not change much from particle to particle, the
coherent scattering changes significantly as more particles are
added. This is the source of the monotonic trend of the trajec-
tory (particles 50 to 30), as further explained in the following.
At some point (∼ particle 30), adding more particles to the
coherent scattering does not influence much the resulting
amplitude of the scattered field. From that point to the begin-
ning of the chain starts the observed spiral with minor vari-
ations in the excitations. In the very first particles of the chain
(particles 1 to 5) the variations are larger. This is due to the
absence of enough particles to the left, which contribute to the
incoherent scattering that each of these edge particles experi-
ences. Namely, when only a small number of particles interfere
incoherently, the resulting electric field is non negligible.
Interestingly, the described behavior of the nanoparticle chain
is the same for a larger number of inclusions (see Section 7 of
the ESI†), where the anomalous phase evolution spans over
∼20 particles from the end of the chain.

IV. RA induced angular reflection
anomaly

So far, we have investigated how the RA induces anomalous
phase gradients of the particle’s excitation. However, although
these gradients can be probed by interferometric
measurements,60,61 their notable implication are the associ-
ated angular anomalies. Specifically, we show that the light
reflected and diffracted from the chain deviates from the
grating equation (eqn (8)) for infinite chains. Fig. 4(a) illus-
trates the phenomenon, where the incident light is diffracted
at the RA anomaly condition at a grazing angle to the surface
(order m = −1) and cause a deviation of the specular reflection
by Δθ with respect to the infinite chain reflection. In Fig. 4(b)
we compare the angular distribution of the specular reflection
of a finite- and an infinite-chain with the same parameters, for
two different wavelengths (cases A and B in Fig. 3(a)). The verti-
cal orange lines show the expected direction of specular reflec-
tion for the infinite chain, i.e., Δθ = 0. We can see that for the
off-resonance case, in the top figure, the reflected power is cen-
tered around Δθ = 0. In contrast, for the on-resonance case, at
the bottom, the reflection is shifted to Δθ = 0.23°. This angular
deviation occurs due to the phase gradient that spans ∼20 par-
ticles at the end of the chain, as discussed in Section III.
Therefore, it is manifested in all the other diffraction orders as
well. The direction of the observed shift is consistent with the
slope of the phase gradient, and its magnitude is equal to
12.5% of the full width at half the maximum (FWHM) of the
specular reflection. In Fig. 4(c) we show the angular deviation
as a function of wavelength for chains of different lengths. The
angular deviation peaks around the RA condition (black verti-
cal line), whereas, as expected, the deviation is more pro-
nounced for shorter chains. As the chain becomes longer the
FWHM of the diffracted beams becomes smaller, therefore it
is insightful to look at angular deflection normalized to the
associated FWHM. In Fig. 4(d) we show the normalized Δθ at
the wavelength of maximal deviation around the RA vs. the
chain length (blue dots) and a fit to the function a·exp(−N/b)
(orange line). The extracted decay parameter is b = 555, which
emphasizes the slow decay of the effect vs. the number of par-
ticles. Specifically, even to a 1000-particle chain (length of
420 microns), there is still a deviation of 2.5%. The decay of
the effect for bigger chains can be understood as follows: the
phase gradients span a constant number of particles (∼20) at
the edge of the chain. For any chain with more particles, the
gradient will span predominantly these particles, while the
rest of the chain will respond mostly like an infinite chain.
The diffraction pattern can be regarded as emanating from the
two parts of the chain: the first part, with the phase gradient,
supports the angular deviation while the second part, with the
infinite-like response, diffracts according to the grating
equation. Therefore, as the chain gets larger, the contribution
of the first part, which causes the angular deviation, to the
total diffraction gets smaller, and the overall deviation decays.
For typical experimentally explored arrays with lengths of 100

Paper Nanoscale

Nanoscale This journal is © The Royal Society of Chemistry 2023

Pu
bl

is
he

d 
on

 1
4 

Ju
ly

 2
02

3.
 D

ow
nl

oa
de

d 
by

 T
el

 A
vi

v 
U

ni
ve

rs
ity

 o
n 

8/
15

/2
02

3 
2:

22
:4

6 
PM

. 
View Article Online

https://doi.org/10.1039/d3nr02293e


to 500 microns, the deviation would be 9% to 2% of the
FWHM, correspondingly. We note that we focused on analyz-
ing the reported effects of RA induced phase gradients and
angular anomalies for the polarizability value specified in eqn
(29), which corresponds to no dissipative loss, but these effects
persist also for larger loss rates, even up to the critical value
where the dissipative and the radiative loss rates are equal.55

Specifically, for this critical coupling we found that for a
50-particle chain, the angular deviation with respect to the
FWHM changes from 12.5% to 7.6% (see Section 12 of the
ESI†).

V. Scattering path interference

The presented theoretical framework enables us to explore the
buildup of the chain excitation as originating from inter-
ference of the multiple scattering paths. In Fig. 5, we show the
scattering paths at the chain, and their interference with each
other.¶ The figure presents the various terms that contribute
to bq, for the off- (Fig. 5(a) and (c), ζ = 0.05·e0.19iπ) and on-
(Fig. 5(b) and (d), ζ = 0.37·e0.58iπ) resonance cases.

We note that Bq and bq are intrinsic to the chain, and do
not depend on the applied field parameters, nor on the
number of particles in the chain. In Fig. 5(a) and (b) we show
the terms contributing to b3, and in Fig. 5(c) and (d), the terms
contributing to b30. In b3 the interference is composed of three
scattering paths, as shown in Fig. 2. The first yellow arrow
corresponds to the 1 → 2 → 3 → 4 path, the second to the 1 →
2 → 4 and 1 → 3 → 4 paths, and the third to the 1 → 4 path.
We note that the first arrow in Fig. 5(a) is vanishingly small. In
the off-resonance case, the different terms add up almost
coherently (i.e., with the same phase), giving rise to a total bq that is considerably larger than each of the paths contributing

to it. On the other hand, in the on-resonance case, the path
interference is more complex, as the relative angle between
successive arrows is significantly larger than in Fig. 5(a). This

Fig. 4 Angular reflection anomaly. (a) Illustration of the finite chain illuminated at the RA condition. The grazing order m = −1 cause a deviation of
the specular reflection by Δθ with respect to the infinite chain reflection. (b) The normalized power of the specular reflection for (top) off- and
(bottom) on-resonance cases (cases A and B in Fig. 3(a)). The orange vertical lines show the direction of reflection for infinite chain, i.e., Δθ = 0. For
the off-resonance case, the reflection is co-centered with the infinite chain reflection, while for the resonating particles at the RA condition, a shift
of Δθ = 0.23° is seen. (c) The angular deviation as a function of wavelength for chains of different lengths. The angular deviation peaks around the
RA condition (black vertical line), whereas the deviation is more pronounced for shorter chains. (d) The maximal angular deviation around the RA
normalized to the associated FWHM of the reflected beam as a function of the chain length (blue dots), and a fit to the function a·exp(−N/b) (orange
line). The fit parameters are amplitude of a = 0.14 and decay length of b = 555, which emphasis the slow decay of the effect vs. the number of
particles.

Fig. 5 Scattering path interference. The paths contributing to the
complex amplitude bq are shown for q = 3 in (a) and (b) and for q = 30 in
(c) and (d). In addition, (a) and (c) correspond to the off-resonance case
(1440 nm) while (b) and (d) to the on-resonance case (1000 nm). In (a)
and (b) the interference is composed of three scattering paths, accord-
ing to Fig. 2. We note that the first arrow in (a) is vanishingly small. In the
off-resonance case, the different terms add up almost coherently (i.e.,
with the same phase), giving rise to a total bq that is considerably larger
than each of the paths contributing to it. On the other hand, in the on-
resonance case, the path interference is more complex, leading to the
observed triangular shapes. This morphology takes place due to the
resonant response of the nanoparticles, where the phase of αs is
imprinted and cascaded in the interference pattern. Specifically, the
paths are ordered by the number of the absorption–remission processes
they include (i.e., according to T ;

P
i
ti).

62 Therefore, paths with succes-
sive values of T have a nearly constant phase difference between them,
which gives rise to the observed triangular shapes.

¶The computation of the partition of q for the different ti according to t1 + 2t2 +
… + qtq = q (eqn (21)), was performed using.62
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morphology takes place due to the resonant response of the
nanoparticles, where the phase of αs is imprinted and cas-
caded in the interference pattern. Specifically, the paths are
ordered by the number of the absorption-remission processes
they include (i.e., according to T ;

P
i
ti).

62 Therefore, paths
with successive values of T have nearly constant phase differ-
ences between them, which gives rise to the observed triangu-
lar shapes. In Section 8 of the ESI,† we show how the mecha-
nism that gives rise to the RA induced phase gradients can be
understood from the dependence of bq on q.

VI. Macroscopic description of the
chain’s dynamics

The theoretical point of view that was adopted in this paper
considers the microscopic dynamics of the chain, i.e., analyzes
the excitation of each particle. Alternatively, the chain
dynamics can be viewed by a macroscopic description, via the
introduction of global wave functions that encapsulate the
microscale interactions. In such analysis, the different wave
phenomena can be discerned from the analytic properties of
the chain’s Green function.25 Specifically, this approach
reveals two distinct wave phenomena that are of dominant
importance to finite or semi-finite chains with inter-particle
spacing larger than λ/2: leaky modes and continuous spectrum
waves. In this case, guided modes of any type, confined or
light-cone, cannot be supported. Leaky modes can be found by
searching the zeros of the chain’s equation of dynamics, or
equivalently, by seeking for the Poles of the chain’s spectral
Green function, and are characterized by an exponential decay
of their amplitude along the chain. Conversely, the continuous
spectrum waves are associated with branch-cut singularities of
the chain’s spectral Green’s function and show an algebraic
decay.25 In Section 10 of the ESI,† we show that the phenom-
enon discussed in this paper, RA-induced phase gradients, is
associated with the excitation of a continuous spectrum wave
through a diffraction order of the impinging wave wavenum-
ber. The interference between the specular reflection and the
resonantly coupled continuous spectrum wave back to the
wavenumber of the impinging wave results in the anomaly of
the diffracted and reflected light.

VII. Conclusions

In this paper, we have developed a multiple scattering model
to analyze the spatial excitation in finite nanoparticle chains.
With this model, we demonstrated and analyzed a novel
phenomenon of RA induced phase gradients in finite nano-
particle chains. These phase gradients are rooted in the finite
length it takes for the in-plane diffraction at the RA condition
to build up. The gradients are inherent to finite chains with
resonant nanoparticles and in spectral vicinity to a uni-
directional RA, i.e., towards one direction of the chain. The
induced phase profiles also affect the diffraction and specular

reflection from the chain. Specifically, it causes a deviation of
the diffraction pattern with respect to the infinite chain.

The analytical model treats the chain, a reciprocal system,
by a successive solution of two non-reciprocal systems. Then,
by approximating the governing matrices, we find a closed-
form solution to the particle dipole moments. Intriguingly, the
solution enables describing the excitation as originating from
the interference of multiple scattering paths within the chain.
Moreover, we show that the multiple scattering process can be
accounted for by the generalized Fibonacci series, which
reveals the recursive relation that underlies the chain exci-
tation. Extension of the presented model to the case of two-
and three-dimensional geometries may be trivial for the
common case where the coherent interaction predominantly
occurs in only one of the dimensions, and otherwise may
require further formulation based on block matrix analysis.
The model presented in this paper is important for analyzing
finite arrays and the various phenomena that they can exhibit.
Recently, the matured technology from the microwave regime
of traveling-wave antenna, which relies on finite-size effects, is
being investigated for miniaturized directive beam scanners in
optical arrays.23,24,63 We believe that the analysis of these
systems, as well as general beam shaping schemes, can benefit
from the developed framework, as it establishes a complemen-
tary microscopic picture to the well-established macroscopic
theory of particle arrays. Moreover, the model may find use
also in the description of finite disordered systems or other
systems with weakly coupled components.
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