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Virtual lattice resonance of a single nanoresonator in a metal nanoslit
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We study the transmission through a subwavelength metallic slit loaded with a single nanoresonator. To gain
physical insight into the problem a theoretical model combining the dipole approximation and image theory is
developed. The model shows that the coupling between the single nanoresonator and the slit’s cavity modes
serves as a localized analog to an infinite nanoresonator array. This virtual array supports a surface image-lattice
resonance due to the coherent self-scattering of the single nanoresonator. Thereby, it may lead to the ability to
mimic many recently reported intriguing physical phenomena of real surface-lattice resonances in nanoresonator
arrays, by a single-subwavelength system. We specifically show that it leads to enhanced light-matter interaction,
and to the appearance of an extraordinary transmission window. The theoretical results are in good agreement
with full-wave numerical simulations.
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I. INTRODUCTION

In arrays of metallic nanoparticles (NPs), radiative cou-
pling between the NPs was shown to drastically modify the
effective single-NP response [1–7]. In particular, the cou-
pling between the NPs’ localized surface plasmon resonance
(LSPR) and a photonic lattice mode, results in a hybridized
state, named surface-lattice resonance (SLR). The SLR is
characterized by sharp spectral features compared to the
LSPR and is accompanied by large field enhancement in the
vicinity of the NP. These characteristics enabled the utiliza-
tion of the SLR phenomenon to demonstrate a variety of
interesting and attractive physical phenomena. For example,
it was used to demonstrate high-Q factors in plasmonic NP
lattices [8–10], enhancement, and manipulation of nonlinear
processes [11–14], coupling with different materials [15–17]
that can lead to lasing [18,19], Bose-Einstein condensation
[20,21], shaping and enhancing fluorescent emission [22,23],
and sensing [24–26]. Furthermore, realization of SLRs in
nontrivial lattices [27–32] and environments [33–37] enriches
the hybridization picture with additional photonic modes and
furthers the optical capabilities of the lattice. However, the
SLR Q factor is highly influenced by edge effects [38], and
thus large NP arrays are essential for demonstrating SLRs.

Another platform that was extensively studied for enhanc-
ing the light-matter interaction and facilitating a variety of
physical phenomena is the Fabry-Perot (FP) cavity. By dress-
ing the cavity with different emitters, strong coupling between
photonic and material modes can be achieved [39–44]. More-
over, metallic NPs embedded between two horizontal metal
films were shown to exhibit strong coupling between the
plasmonic and the FP modes [45–52]. However, such systems
were only demonstrated using coupling to longitudinal FP
modes in a copropagation configuration, and the observed
energy split is theoretically described by a Hamiltonian for-
malism, in analogy to quantum emitters. While the strong
coupling characteristics are well captured by these models,

the details of the coupling process are hidden in the coupling-
strength parameter.

In this paper, we theoretically and numerically demonstrate
that a single resonant NP embedded in a horizontal FP cavity
formed by a metallic subwavelength nanoslit locally mimics
the optical response of an infinite NP chain. We employ the
dipole approximation (DA) model, along with the method of
images, to theoretically describe the coupling process between
the single-NP resonance and the lateral FP cavity modes.
Consequently, a virtual image-chain perspective replaces the
interaction with the slit. The model shows that under the con-
dition of coherent self-scattering the hybridized state shows
similar features to that of an SLR on an infinite lattice. There-
fore, it suggests that many of the recently discovered physical
phenomena and applications of SLRs may be realized by a
single-subwavelength nanoscale system [10–26].

Specifically, we show that the virtual image chain signif-
icantly enhances the light-matter interaction. This enhance-
ment supports the transmission of light through the slit in the
forbidden regime, above the cutoff wavelength of the bare slit
(without the NP). We also show that unlike the conventional
SLR phenomenon, the interaction may be further enhanced
by large numerical aperture (NA) excitations [8]. To verify our
model, we perform full-wave simulations of the proposed sys-
tem using the finite-difference time-domain (FDTD) method.

II. RESULTS AND DISCUSSION

A. Theoretical model

The system we study is depicted in Fig. 1. A transverse
electric (TE) polarized light normally illuminates an infinite
gold film of height H , which contains a single infinitely long
nanoslit of width W . A single gold nanorod of length l , width
w, and thickness h is placed at the center of the slit. The
ambient constant refractive index is n.
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FIG. 1. Schematic illustration of the studied system as viewed
from the side (a) and top (b). A TE polarized plane wave normally
impinges on an infinite slit of width W , in a gold film of height H , in
an ambient dielectric with refractive index n. A single gold nanorod,
with width w, thickness h, and length l , is placed in the center of the
slit. The impinging light’s wave vector is in the z direction with the
electric-field polarization in the x direction. In (a), the electric-field
amplitude distribution along the y axis of the first FP cavity mode (of
the bare slit) is shown inside the slit.

For the bare slit, assuming the metal is a perfect electric
conductor (PEC) and ignoring the finite height of the slit, the
tangential electric field at the slit boundaries must vanish and
the electric-field profile inside the slit takes the form of an
ideal waveguide:

E =
√

2E0cos(ky,my)e−ikz,mzx̂, (1)

where E0 is the impinging light’s electric-field amplitude,

ky,m and kz,m =
√

k2−k2
y,m are the y and z components of

the wave vector of the mth mode, respectively, m = 1, 2, . . .,
k = 2πn/λ is the impinging light’s wave number, and λ is the
vacuum wavelength.

The mth mode can propagate only if k2−k2
y,m > 0; other-

wise, kz,m is imaginary and the wave decays exponentially
as it enters the slit, with a decay constant |kz,m|. This de-
fines the cutoff wavelength of the slit, above which no mode
can propagate and is found from the condition k2

z,1 = 0,
resulting in

λcutoff = 2nW. (2)

Now, we turn to the loaded slit. To theoretically model
the coupling process between the NP and the slit, we employ
the DA along with the method of images. In the DA the NP
is replaced by a point dipole, which is characterized by a
polarizability αs. In the presence of a local electric field Eloc a
dipole moment p is excited:

p = αsEloc = αs(Eapp + Esca ), (3)

where the local field is the sum of Eapp, the applied field,
calculated from Eq. (1) at the dipole’s location, and Esca, the
scattered field in the slit. The NP’s elongated shape ensures
that the dominant dipole moment is directed in the x direction,
and the scalar approach may be invoked. We model the single-
NP polarizability as a Lorentzian:

αs(ω) = A

ω2
LSPR − ω2 − iγω

, (4)

FIG. 2. Schematic illustration of the infinite image chain. The
basic unit cell is replicated an infinite number of times. The original
dipole p (dipole images pj) and unit-cell’s boundaries (unit-cell’s
boundaries images) are marked by an orange arrow (light orange
arrows) and solid black lines (dashed black lines), respectively. Al-
ternating flipping of the arrows corresponds to a cumulative π phase
shift according to Eq. (5), for the case of a PEC.

where A is the polarizability amplitude, ω = 2πc/λ is the
optical angular frequency, c is the speed of light in vac-
uum, ωLSPR = 2πc/λLSPR with λLSPR being the LSPR vacuum
wavelength, and γ is the damping rate, which accounts for
both Ohmic and scattering losses. For simplicity, we neglect
corrections to the polarizability which account for full energy
conservation and retardation effects of the dipole for the case
of an elongated NP. For more accurate results, the modified
long-wavelength approximation should be considered [53].

When light impinges on the slit, the dipole moment is ex-
cited by the applied field in Eq. (1), which can be propagating
(for k2

z > 0) or decaying (for k2
z < 0) and reemits the radia-

tion. Light radiated by the dipole in the y direction is reflected
by the slit’s boundaries back to the dipole in a self-scattering
process. The slit’s boundaries act as an infinity mirror such
that an infinite number of reflections must be considered. Each
reflection is characterized by a reflection amplitude R and
phase ϕr (for a PEC R = 1 and ϕr = π ).

To describe the reflections in the slit, we use the method
of images. Figure 2 shows a schematic illustration of the
excited-dipole moment p in the xy plane, along with its infinite
images p j , for j = ±1,±2, . . .. The jth image stems from | j|
reflections; thus, to account for the reflection amplitude and
phase, the dipole moment takes the form

p j = R| j|ei| j|ϕr p. (5)

The influence of each image on the original dipole is gov-
erned by Green’s function formalism. In free space and under
the scalar approximation, Green’s function, which describes
the emitted electric field from the jth image to the original
dipole, takes the form

G j = eikr j

[
(1 − ikr j )[3cos2(ϑ j ) − 1]

r3
j

+ k2sin2(ϑ j )

r j

]
, (6)

where r j is the displacement vector from the image to the
original dipole, r j = |r j | = | j|W , and ϑ j = 90◦ is the angle
between the dipole moment and r j .

The total scattered field at the original dipole’s location is
given by the infinite sum over the scattered fields from all
images:

Esca =
∑
j �=0

G j p j = Sp; S ≡
∑
j �=0

R| j|ei| j|ϕrG j, (7)

where S is the structural factor of the image chain and pj was
taken from Eq. (5).
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The structural factor S describes the influence of the entire
image chain on the original dipole and takes a similar form
to the structural factor of an infinite NP chain under normal
incidence illumination. For NP chains, the structural factor
exhibits sharp resonances for the different orders of coherent
scattering λ(CS)

m = nd/m, with λ(CS)
m being the vacuum wave-

length of the mth order of coherent scattering, d being the
chain spacing, and m = 1, 2, . . .. These coherent-scattering
conditions are often referred to as Rayleigh anomalies, where
a diffraction order of the chain propagates along the chain.
Here, the structural factor exhibits sharp resonances under the
conditions of coherent self-scattering. In the explicit form of
the sum which defines S in Eq. (7), every term is multiplied
by a complex exponent exp[i| j|(kW + ϕr )], such that the
condition of coherent self-scattering is k(CSS)

m W + ϕr = 2πm,
where m = 1, 2, . . ., and k(CSS)

m = 2πn/λ(CSS)
m , with λ(CSS)

m
being the vacuum wavelength of the mth order of coher-
ent self-scattering. For PEC boundary conditions ϕr = π ,
such that the orders of coherent self-scattering take the form
λ(CSS)

m = nW/(m−1/2).
Comparison between the coherent scattering (λ(CS)

m ) and
the coherent self-scattering (λ(CSS)

m ) orders reveals that for a
certain wavelength, the coherent self-scattering modes occur
for an image-chain spacing that is smaller than the corre-
sponding NP chain spacing for coherent-scattering modes. For
example, the first order of coherent self-scattering is achieved
for an image-chain spacing that equals half the spacing of an
NP chain at the coherent-scattering condition. As a result, the
contribution of each image to the virtual structural factor is
more significant, and the structural factor of an image chain
reaches higher values than that of an NP chain. This leads to a
stronger coupling between the single NP and the image chain,
in resemblance to the increased coupling strength which oc-
curs when increasing the polarizability amplitude [54].

It is interesting to see that the orders of coherent self-
scattering λ(CSS)

m match the cutoff wavelengths of the odd
TE waveguide modes in Eq. (1), which are found by taking
kz,m = 0, with m = 1, 3, . . .. For each waveguide mode the
corresponding cutoff wavelength separates between decaying
(above the corresponding cutoff wavelength) and propagat-
ing (below the corresponding cutoff wavelength) waves of
that mode, such that exactly at the cutoff wavelength a non-
propagating mode may exist with no propagation or decay
constants. These non-propagating modes correspond to the
modes of coherent self-scattering of the NP, which may also
be regarded as the FP cavity modes. Only odd FP cavity
modes may interact with the NP owing to the reflection sym-
metry across the x-axis, and even FP cavity modes may be
accessed by moving the NP from the center of the slit and
breaking this symmetry.

Combining Eqs. (3)–(7) and solving for p results in

p = αeffEapp; αeff ≡ αs

1 − Sαs
, (8)

where αeff is the effective polarizability of the point dipole in
the presence of the slit, which is associated with the applied
field rather than the local field.

This expression for the effective polarizability is a closed-
form solution for the dipole’s response in the slit and includes
the influence of the image chain through the structural factor.

The image-chain perspective of the problem replaces the in-
teraction with the slit, which is manifested in the model in the
applied field, which is determined by the waveguide modes in
Eq. (1), and in the reflection coefficients which appear in the
structural factor. Equation (8) resembles the solution for an
infinite array of dipoles [1] [Eq. (10) in Sec. IV, Methods]. In
the context of NP arrays, the effective polarizability describes
the collective response of the array, and within it the forma-
tion of an SLR. Here, the effective polarizability describes
the hybridization of the LSPR and an FP cavity mode as
the collective response of a virtual image chain. Under the
condition of coherent self-scattering, the system manifests
a subwavelength localized analog to the SLR phenomenon,
which we name surface image-lattice resonance (SILR).

We note that for observing the SILR using the fundamental
FP cavity mode, the height of the slit has a critical role in
determining both the excitation strength of the dipole above
the cutoff wavelength and the dissipation rate of the excited
system. Above the cutoff wavelength of the bare slit, the
applied field decays exponentially as it propagates in the slit,
meaning that decreasing the height of the slit results in a
stronger excitation of the dipole. For a strong enough excita-
tion we look at the case of a subwavelength height. However,
decreasing the height of the slit hinders its ability to mimic a
mirror correctly. As the slit’s height decreases to the subwave-
length regime, the scattering from “far” images deviates from
Green’s function formalism such that only “close” images
contribute significant coherent terms to the structural factor
S, where the concept of far and close relates to the exact value
of the slit height. As a result, the virtual photonic mode of
coherent self-scattering, which is described by the structural
factor, becomes increasingly dissipative. This is analogous to
the low-Q factor of finite NP arrays as the size of the array is
reduced [38].

These two competing roles of the slit’s height put a
limitation on the performance of the system. By setting a
subwavelength height the excitation of the NP becomes suf-
ficiently strong, with the cost of decreasing the Q factor of the
resulting hybridized state. However, this limitation is unique
to the fundamental mode of coherent self-scattering as it over-
laps the cutoff condition of the bare slit. Higher modes of
coherent self-scattering occur below the cutoff wavelength,
such that the slit’s height may be increased to achieve higher-
Q factors without decreasing the excitation strength of the
dipole.

Another inherent limitation for the system’s Q factor is
the reflection losses, which exist for all modes of coherent
self-scattering. These reflection losses are negligible for scat-
tering from images close to the original dipole and become
pronounceable for “far” images, which suffer many losses due
to the repeating reflections, where the definition of close and
far is determined by the exact value of the reflection amplitude
[Eq. (5)].

We note that these losses may be included in the model
calculations by using the exact values of reflection amplitude
and phase to calculate the structural factor in Eq. (7) and the
corresponding coherent self-scattering conditions. Thus, this
model suggests a general approach to embody the photonic
modes of the cavity in the structural factor, regardless of the
reflection coefficients, and to obtain an insightful closed-form
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FIG. 3. (a) Absolute value of the effective polarizability αeff (in
arbitrary units), according to Eq. (8), as a function of wavelength
λ and slit width W . Normalized transmission T as a function of
wavelength λ and slit width W of (b) the loaded slit using the DA
model, (c) Bare slit (without NP) using FDTD simulations, and (d)
loaded slit using FDTD simulations. The bare slit’s cutoff according
to Eq. (2) is marked with white dots and the single-NP LSPR wave-
length is marked with yellow dots at λLSPR = 1500 nm.

solution for the effective polarizability in Eq. (8). This solu-
tion describes the coupling process between the NP and the
cavity as hybridization of the NP and a chain of nonperfect
images [Eq. (5)].

B. Numerical results

To observe the SILR dynamics we calculated the absolute
value of the effective polarizability |αeff | according to Eq. (8)
(see Sec. IV, Methods) as a function of wavelength λ and slit
width W , as presented in Fig. 3(a). The chosen Lorentzian
parameters in Eq. (4) are λLSPR = 1520 nm, γ = 314 THz,
and A = 2.6 × 1015 cm3/s2. These parameters were chosen to
fit the response of the loaded slit obtained by full-wave simu-
lations as described below. The reflection amplitude and phase
were assumed to be of a PEC (i.e., R = 1 and ϕr = π ) for
simplicity, and the exact values of the reflection coefficients
may be used for more accurate results.

It can be seen in Fig. 3(a) that the effective polarizabil-
ity is greatly modified in comparison to the single-particle
polarizability [Fig. 4(a) and Appendix], where the effective
polarizability has a local minimum at the fundamental co-
herent self-scattering mode (which coincides with the cutoff
wavelength and is marked with white dots), with an ampli-
fied, narrowed, and redshifted peak, and a diminished wide
blueshifted peak surrounding it, in resemblance to SLRs [1,2].

It is interesting to compare between the SILR and SLR
phenomena with respect to the resulting effective polarizabil-
ity. Figure 4(b) depicts the absolute value of the effective
polarizability of an infinite image chain (infinite NP chain)
as a function of wavelength for a slit width of W = 500 nm

FIG. 4. (a) Absorption, scattering, and extinction cross sections
σ of the single NP as a function of wavelength λ, in red solid line,
blue dashed line, and black dotted line, respectively, using FDTD
simulations. Extracted LSPR wavelength is about 1500 nm (see
Appendix). (b) Absolute value of the effective polarizability αeff

as a function of wavelength λ for an image chain (red solid line)
and for an infinite NP chain (blue dashed line), consisting of the
same localized resonance. Effective polarizabilities were calculated
according to the DA using Eqs. (8) and (10). Chain spacing was set
to W = 500 nm for the image chain, and to d = 1000 nm for the
NP chain, such the first orders of coherent (self-) scattering coincide
at the LSPR wavelength of λ = 1500 nm (which is marked with a
black dashed vertical line). The two effective polarizabilities show a
similar behavior with three main differences. Polarizability peak of
the image chain is stronger, narrower, and redshifted twice as much
as the polarizability peak of the NP chain.

(chain spacing of d = 1000 nm), consisting of the same local-
ized resonance. The image-chain and NP-chain spacings were
chosen such that the first orders of coherent self-scattering
(for the image chain) and coherent scattering (for the NP
chain) coincide at the same wavelength of the LSPR, i.e., λ =
1500 nm. The resonance of the image chain is both stronger
and narrower than the resonance of the NP chain. In addition,
the resonance of the image chain peaks around a wavelength
of 1700 nm, which translates to a spectral shift of ∼200 nm
from the coherent self-scattering wavelength, which is double
the spectral shift of the NP chain. These differences exhibit
the increased coupling strength between the single NP and the
image chain which occurs due to the shorter periodicity of
the image chain, as described in the previous section. Namely,
reduction of the chain spacing results with an enhanced struc-
tural factor which represents a stronger photonic mode. This
increase in the coupling strength may be advantageous for the
SILR compared to the SLR.

We also calculated the total transmitted energy through the
loaded slit (see Sec. IV, Methods). Usually, the transmission
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of light through NP arrays exhibits dips at the spectral location
of the structure’s resonances, which result from the absorption
and reflection of the impinging energy at the array. However,
for subwavelength metallic apertures transmission of light
is typically forbidden (i.e., for W < λ/2n in this case), and
extraordinary optical transmission (EOT) peaks may appear
when the structure’s modes assist in channeling the impinging
energy through the apertures [55–61]. Here, both regimes
exist as explained below.

Figure 3(b) depicts the normalized transmission T through
the loaded slit as a function of wavelength λ and slit width
W , using the DA. The cutoff wavelength of the bare slit
according to Eq. (2) is marked by white dots. Below the cutoff
wavelength, transmission through the bare slit is allowed, and
a transmission dip through the loaded slit exists due to energy
dissipation and reflection, as in NP arrays. On the contrary,
above the cutoff wavelength, transmission through the bare
slit is forbidden, and the SILR leads the appearance of an EOT
peak. This peak closely follows the curve of maximal |αeff |
in Fig. 3(a). Although the amplitude of the impinging light
decays exponentially as it propagates through the slit, it still
manages to excite the dipole located in the slit. The hybridized
dipole then radiates to the exit of the slit, explaining the
EOT features. In addition, the EOT peak shows a narrowed
linewidth in accordance with the virtual collective-response
picture.

One may expect that the EOT peak’s amplitude will in-
crease with increasing amplitude of αeff ; however, comparison
of Fig. 3(a) with Fig. 3(b) shows a reversed amplitude profile.
The maximal amplitude of αeff is highest for small slit widths
and decreases for increasing widths. On the contrary, the EOT
peak is lowest for small slit widths and increases for increas-
ing widths. This is because the decay constant |kz| increases
as the cutoff wavelength and wavelength of maximal |αeff |
grow apart, and the impinging field’s amplitude at the NP’s
location decreases exponentially. According to Fig. 3(a), this
effect is most pronounced for small slit widths, and the exci-
tation of the dipole is negligible. As the slit width increases
the excitation of the dipole becomes powerful enough to
support EOT.

To verify the theoretical model, we also performed full-
wave FDTD simulations (see Sec. IV, Methods). Figure 3(c)
depicts the normalized transmission T through the bare slit as
a function of wavelength λ and slit’s width W , using FDTD
simulations. The white dots represent the cutoff of the bare
waveguide, according to Eq. (2), which coincide with the vis-
ible cutoff in the graph. The simulated cutoff slightly deviates
from the prediction for large slit widths. This is because of
the subwavelength height of the slit, which leads to a field
distribution that differs from the mode of an infinite height
ideal waveguide, which appears in Eq. (1).

Figure 3(d) depicts the normalized transmission T through
the loaded slit as a function of wavelength λ and slit width
W , using FDTD simulations. It can be seen that Figs. 3(b)
and 3(d) are in good agreement, where the EOT peak (above
the cutoff wavelength) and the transmission dip (below the
cutoff wavelength) follow the same trend, thus supporting the
validity of the DA model.

Despite the overall agreement between the DA and FDTD
calculations, the two graphs show two main differences: (1)

FIG. 5. Transmission through a loaded PEC slit. (a) Normalized
transmission T through a loaded PEC slit as a function of wavelength
λ and slit width W, using FDTD simulations. (b) Normalized trans-
mission T through loaded PEC (dashed blue line) and gold (solid
red line) slits as a function of wavelength λ, for a slit width of
W = 500 nm, using FDTD simulations. Deviation of gold from a
PEC leads to redshift, enhancement, and a reduced Q factor of the
EOT peak.

The width of the EOT peak is narrower for the DA calculation
compared to FDTD calculation, and (2) at long wavelengths,
the transmission calculated by the DA shows a dip along the
cutoff condition, which is absent from the FDTD calculation.
The former may be explained due to the subwavelength height
of the slit, as explained in the previous section, and due to
losses, which inherently exist in reflections from gold in the
FDTD simulations, and contrasts with the PEC assumption
which was taken in the DA calculations. The latter may be
explained by the subwavelength height of the slit, which cre-
ates deviations from the ideal waveguide assumption that was
taken in the DA calculations.

To better understand the loss mechanism in the FDTD
simulations, we simulated a loaded PEC slit, where the slit
was made from a PEC instead of gold (see Sec. IV, Methods).
The NP remains the same, i.e., made of gold, such that only
losses attributed to the repeating reflections in the slit are
omitted from the calculations. The remaining losses result
from the NP and the finite height of the slit. Figure 5(a) depicts
the normalized transmission through the loaded PEC slit as
a function of slit width W and wavelength λ, using FDTD
simulations. This transmission plot is very similar to Fig. 3(d)
and shows the same characteristics, with some disagreement
on the spectral location of the features.

Figure 5(b) depicts the transmission through the loaded
slit as a function of wavelength λ, for gold and PEC slits,
with a width of W = 500 nm. The transmission through the
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two loaded slits shows very similar behavior, with an EOT
peak above the cutoff wavelength and a transmission dip
below. However, the EOT peak of the gold slit is redshifted
by ∼50 nm from the EOT peak of the PEC slit. While the
repeating reflections in the PEC slit occur with a reflection
phase of ϕr = π , the reflections in the gold slit are character-
ized by a reflection phase slightly larger than π . This small
phase addition for the gold slit is introduced into the coherent
self-scattering condition and consequently redshifting it by a
small amount, which in turn redshifts the SILR. In addition,
the EOT peak of the gold slit is stronger, which is attributed
to a smaller decay constant of the applied field, due to the
deviation from a PEC behavior.

In order to assess the reflection losses in the gold slit we
calculated the Q factor of the two SILRs using Q = λres/
λ,
with λres being the wavelength of maximal transmission and

λ being the SILR width at half maximum. The SILR Q
factors of the PEC and gold slits are found to be QPEC ≈ 19.5
and Qgold ≈ 14.5, respectively, where the decrease in the Q
factor is caused by the reflection losses of gold. The increased
dissipation shown in the gold simulations may pose limita-
tions on the performance of the SILR when extremely high-Q
factors are required. However, a Q factor of ∼15 corresponds
to quadrupling of the Q factor compared with the LSPR
[calculated according to Fig. 4(a)], depicting the pronounced
influence of the image chain on the effective response of the
NP. Additionally, by working with higher modes of coherent
self-scattering such that the height of the slit may be increased,
and by adding a periodicity of NPs within the slit, the Q factor
of the SILR may be increased.

We also examined the electric-field enhancement inside the
slit. Figures 6(a) and 6(b) depicts the electric field’s normal-
ized amplitude profile in the xy plane, on top of the NP, for
the loaded slit (with a width of W = 500 nm, at the EOT
wavelength) and an isolated NP (at the LSPR wavelength),
respectively, using FDTD simulations. The electric field’s am-
plitude in the loaded slit at the vicinity of the NP shows up to
70-fold enhancement compared to the applied field amplitude,
∼3 times higher than the enhancement around the single NP
at its resonance, suggesting that the proposed system may
be beneficial for nonlinear applications and light-matter cou-
pling, in similarity to SLRs [10–26].

In addition, we examined the effect of varying the angle
of incidence of the impinging light on the SILR. Figure 7(a)
[Fig. 7(c)] shows a schematic illustration of the slit under
oblique incidence illumination, at an angle ϕ in the yz plane
(angle ψ in the xz plane). Figure 7(b) [Fig. 7(d)] depicts
the normalized transmission T through the loaded slit as a
function of wavelength λ and angle of incidence ϕ(ψ ), for
a constant slit width W = 500 nm. The transmission plots
reveal that while the EOT amplitude diminishes for increasing
angles of incidence, the spectral location of the EOT peak,
and therefore also of the SILR, remains constant. In contrast
to arrays of NPs, where coherent scattering highly depends
on the angle of incidence [4,18], our proposed system holds
the condition for coherent self-scattering constant, regardless
of the angle of incidence. The impinging light couples to the
waveguide modes of the bare slit, which are predetermined
by the geometry. The decrease in EOT peak’s amplitude is
mainly due to decrease in the coupling strength between the

FIG. 6. Electric-field amplification in the xy plane, on top of the
nanorod, for (a) loaded slit of width of W = 500 nm at the EOT
wavelength, and (b) an isolated nanorod at the LSPR wavelength at
λ = 1550 nm, using FDTD simulations. The two plots are displayed
in the same scale for comparison, and in (a) white dashed lines in-
dicate the slit’s boundaries. Electric-field enhancement in the loaded
slit is ∼3 times higher than the field enhancement around the isolated
nanorod.

impinging light and the waveguide modes of the bare slit,
which may be understood by the reduced effective field of
view of the slit for oblique illumination. In addition, increas-
ing the angle ψ results in quicker decay compared to the

FIG. 7. Oblique incidence illumination. Schematic illustration of
the slit under oblique incidence illumination, at (a) an angle ϕ in the
yz plane, and (c) angle ψ in the xz plane. Normalized transmission
spectrum T through the loaded slit (with a width of W = 500 nm)
as a function of (b) angle of incidence ϕ, and (d) angle of incidence
ψ , using FDTD simulations. Cutoff wavelength according to Eq. (2)
and LSPR wavelength are marked with white dots at λ = 1500 nm.
EOT peak strength diminishes with increasing angles of incidence,
however the spectral location is unchanged.
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FIG. 8. Focused-beam illumination. Transmission T through the
loaded slit under a Gaussian-beam illumination as a function of
wavelength λ and NA, with a slit width of W = 500 nm, using FDTD
simulations. Observed EOT peak reaches up to ∼0.25 for high NA
values.

ϕ dependence. This is due to the difference of the light’s
polarization for the two cases. For angle ϕ, the polarization of
the impinging light remains the same, in the x axis. However,
for angle ψ , the polarization rotates in the xz plane such
that the effective exciting field (i.e., only the x component) is
reduced.

This angle-independence behavior raises the possibility of
experimentally measuring the predicted transmission using a
focused beam, in contrast to an SLR in NP arrays [8]. Such
a configuration has the potential to measure the SILR from a
single NP, and to highly enhance the light-matter interactions.
As a proof of concept, we calculated Fig. 8, which depicts
the transmission spectrum T through the loaded slit as a func-
tion of NA for a Gaussian beam illumination, using FDTD
simulations. The EOT peak is relatively weak for small NAs
and enhances with increasing NA values, as expected since
the impinging spot size decreases with increasing NA. The
EOT strength reaches ∼0.25 for a highly focused beam. In
addition, focusing of the impinging light increases the applied
field concentration, which translates to an increase in the field
enhancement around the NP.

III. CONCLUSIONS

In conclusion, we have theoretically and numerically in-
vestigated the transmission of light through a subwavelength
metal slit loaded with a resonant NP under TE illumination.
To study the coupling process between the FP cavity and
the NP we used a DA approach combined with image the-
ory. The model analysis resulted in a closed-form solution
for the effective polarizability, which accounts for infinite
reflections in the cavity and describes the hybridization of the
LSPR and an FP cavity mode, which gives rise to an SILR
mode. The effective polarizability resembles the solution for
an infinite NP array, such that the SILR acts as a localized
subwavelength analog to the well-known long-ranged SLR.
The SILR supports enhancement of the effective polarizability
which aids the transmission of the impinging energy through

the slit in the forbidden-wavelength regime, resulting with an
EOT peak, which exhibits a Q factor ∼4 times larger than
the LSPR’s. We verified the theoretical model using full-wave
FDTD simulations, which showed the predicted existence of
the EOT effect as well as a significant field enhancement
at the SILR condition. We also investigated the effect of vary-
ing the angle of incidence on the SILR. Our results suggest
that it may be possible to experimentally demonstrate the
predicted SILR using a single NP and a focused beam, and
that the proposed system may find applications in enhancing
light-matter interactions and nonlinear optics, in analogy to
NP arrays [10–26], but with a single-subwavelength system.
In addition, the presented theoretical model may be easily
expanded for NP arrays in an FP cavity in different configura-
tions, such that the strong coupling observed in such systems
[45–52] may be understood by our microscopic theoretical
framework, rather than the use of the macroscopic coupling-
strength parameter.

IV. METHODS

Numerical calculations

In order to calculate the effective polarizability in Eq. (8)
and avoid divergence of the values, the structural factor in
Eq. (7) was calculated as a finite sum over N images from
each side of the central dipole. This finite sum is an ap-
proximation for the infinite sum in Eq. (7), where above a
certain N value, addition of more terms to the finite sum will
slowly increase the structural factor’s absolute value without
changing the spectral location of its resonance. In practice, for
N � 5000 the calculated structural factor changes very little
with increasing N such that the calculations were made with
N = 10 000.

In addition, the DA was used to calculate the normalized
transmitted energy through the slit. The electric field at the
exit surface of the slit is calculated as the sum of the applied
field and the scattered fields from the infinite image chain in
Fig. (2). The applied field was taken from Eq. (1), where the
corresponding kz accounts for propagating or decaying waves,
and the scattered fields were calculated according to Green’s
function formalism. The exit surface of the slit was set at
z = H/2 and has a size of the slit width at the y axis and the
size in the x axis was set to 1350 nm in order to match the
results retrieved from full-wave simulations. The exit surface
was divided into 25 × 25 equally spaced grid points. The total
scattered field Esca,l to each point l from the image chain was
calculated using

Esca,l =
N∑

j=−N

R| j|ei| j|ϕrG(|rl − r j |)p, (9)

where G(|rl − r j |) is Green’s function between the jth dipole
image at location r j = jW x̂ and the relevant point at rl . For
j = 0 the sum includes the direct scattering from the original
dipole at the origin. The number of images on each side was
set to N = 5000, thus neglecting the contribution of further
images.

To compare between the effective polarizabilities of the
loaded slit and an infinite NP chain [Fig. 4(b)], we calculated
the effective polarizability of the infinite NP chain according
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to [1]

αeff,chain = αs

1 − Schainαs
; Schain =

∑
j �=0

G j, (10)

where Schain is the structural factor of the NP chain, which
was calculated using a finite sum instead of an infinite sum,
including N = 10 000 closest NPs from each side.

To verify the theoretical model, we performed full-wave
FDTD simulations (LUMERICAL). The dielectric permittivity
of gold was fitted to data from Ref. [62], and a constant
background index of n = 1.5 was set. For simulating the PEC
slit (Fig. 5), the permittivity of the slit was set to εPEC = 1 +
i × 106. The slit height and NP length, width, and thickness
were set throughout the paper to H = 750 nm, l = 275 nm,
w = 70 nm, and h = 50 nm, respectively. Perfectly matched
layer boundary conditions were set for all boundaries. The
normalized transmission is measured at the exit of the slit,
as the energy emerging from the slit divided by the energy
impinging the slit area. The slit area was defined to have the
size of the slit’s width in the y axis and the size of the x
direction was set to 2000 nm.

For a Gaussian beam illumination, the lens diameter and
beam diameter at the lens were set to 5 and 4 mm, respectively.
The beam normally impinges the slit at its focal point. The
transmission was calculated as the total energy emerging from

the slit divided by the total impinging energy (not normalized
to the slit area).
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APPENDIX: LOCALIZED SURFACE
PLASMON RESONANCE

Figure 4(a) depicts the absorption, scattering, and extinc-
tion cross sections σ of a single gold nanorod as a function
of wavelength, using finite-difference time-domain simula-
tions. The nanorod’s geometrical constants are l = 275 nm,
w = 70 nm, and h = 50 nm, and the surrounding refractive
index is n = 1.5. All three cross sections depict a typical
behavior for an LSPR [1], characterized with broad reso-
nances, which are around the same wavelength. The nanorod
exhibits large scattering efficiency compared to the absorp-
tion, making the radiative damping the dominant source of the
resonance, which is manifested in the extinction cross section.
The LSPR wavelength is determined by the spectral location
of the maximal value of the extinction cross section, around
λ = 1500 nm.

[1] B. Auguié and W. L. Barnes, Phys. Rev. Lett. 101, 143902
(2008).

[2] Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, Appl. Phys.
Lett. 93, 181108 (2008).

[3] A. D. Humphrey and W. L. Barnes, Phys. Rev. B 90, 075404
(2014).

[4] J. P. Martikainen, A. J. Moilanen, and P. Törmä, Philos. Trans.
R. Soc., A 375, 20160316 (2017).

[5] F. J. García de Abajo, Rev. Mod. Phys. 79, 1267 (2007).
[6] A. Vaskin, R. Kolkowski, A. F. Koenderink, and I. Staude,

Nanophotonics 8, 1151 (2019).
[7] V. G. Kravets, A. v. Kabashin, W. L. Barnes, and A. N.

Grigorenko, Chem. Rev. 118, 5912 (2018).
[8] M. S. Bin-Alam et al., Nat. Commun. 12, 974 (2021).
[9] F. Yan, Q. Li, Z. Wang, H. Tian, and L. Li, Opt. Express 29,

7015 (2021).
[10] M. J. Huttunen, O. Reshef, T. Stolt, K. Dolgaleva, R. W. Boyd,

and M. Kauranen, J. Opt. Soc. Am. B 36, E30 (2019).
[11] S. Linden, F. B. P. Niesler, J. Förstner, Y. Grynko, T. Meier, and

M. Wegener, Phys. Rev. Lett. 109, 015502 (2012).
[12] L. Michaeli, S. Keren-Zur, O. Avayu, H. Suchowski, and T.

Ellenbogen, Phys. Rev. Lett. 118, 243904 (2017).
[13] M. J. Huttunen, P. Rasekh, R. W. Boyd, and K. Dolgaleva, Phys.

Rev. A 97, 053817 (2018).
[14] O. Doron, L. Michaeli, and T. Ellenbogen, J. Opt. Soc. Am. B

36, E71 (2019).
[15] M. Ramezani, M. Berghuis, and J. G. Rivas, J. Opt. Soc. Am. B

36, E88 (2019).
[16] R. Kolkowski and A. F. Koenderink, Proc. IEEE 108, 795

(2020).

[17] D. Wang, J. Guan, J. Hu, M. R. Bourgeois, and T. W. Odom,
Acc. Chem. Res. 52, 2997 (2019).

[18] T. K. Hakala, H. T. Rekola, A. I. Väkeväinen, J.-P. Martikainen,
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